scholarly journals Relevant issues of periodic vibration monitoring of buildings and structures

Vestnik MGSU ◽  
2020 ◽  
pp. 1221-1227
Author(s):  
Alexander V. Patrikeev

Introduction. The author proposes a new universal optimization approach to mechanical safety monitoring of buildings and structures in the process of their operation. The new approach involves periodic monitoring of mechanic vibrations. Materials and methods. The methodology of periodic monitoring performable within the framework of general monitoring is based on the analysis of changes in the first natural frequency of a building or a structure and the logarithmic decrement of its damping along three mutually perpendicular axes. The shape and position of resonance peaks of the amplitude spectrum are employed to analyze resonant frequencies and logarithmic decrements of damping. The analysis of those electronically archived parameters is performed, whose values change over time proportionately with vibrations of a monitored facility. The time dependence of the first resonant frequency of a structure is considered as a generalized characteristic of its mechanical safety. Results. The author has shown that findings of the spectral analysis performed in respect of the vibration process are irrespective of a measurement method, provided that the uniformity of external influences is ensured. The frequency dependence of the structure’s first mode of vibrations on time (per year) has two non-linear sections within the entire term of operation. Following the analysis of measurements taken at construction facilities exposed to wind loads, it’s been found that advanced monitoring instruments can identify changes in the value of the first resonant frequency and the damping decrement with a reasonable degree of accuracy. The author believes that this finding has great practical importance. Conclusions. Identification of a trend towards a change in frequency and damping decrement values for the first mode of natural vibrations can help to schedule actions for the improvement of the mechanical safety of an engineering structure, and in some cases it can prevent an upcoming accident.

Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 96
Author(s):  
Alessandro Nastro ◽  
Marco Ferrari ◽  
Libor Rufer ◽  
Skandar Basrour ◽  
Vittorio Ferrari

The paper presents a technique to obtain an electrically-tunable matching between the series and parallel resonant frequencies of a piezoelectric MEMS acoustic transducer to increase the effectiveness of acoustic emission/detection in voltage-mode driving and sensing. The piezoelectric MEMS transducer has been fabricated using the PiezoMUMPs technology, and it operates in a plate flexural mode exploiting a 6 × 6 mm doped silicon diaphragm with an aluminum nitride (AlN) piezoelectric layer deposited on top. The piezoelectric layer can be actuated by means of electrodes placed at the edges of the diaphragm above the AlN film. By applying an adjustable bias voltage Vb between two properly-connected electrodes and the doped silicon, the d31 mode in the AlN film has been exploited to electrically induce a planar static compressive or tensile stress in the diaphragm, depending on the sign of Vb, thus shifting its resonant frequency. The working principle has been first validated through an eigenfrequency analysis with an electrically induced prestress by means of 3D finite element modelling in COMSOL Multiphysics®. The first flexural mode of the unstressed diaphragm results at around 5.1 kHz. Then, the piezoelectric MEMS transducer has been experimentally tested in both receiver and transmitter modes. Experimental results have shown that the resonance can be electrically tuned in the range Vb = ±8 V with estimated tuning sensitivities of 8.7 ± 0.5 Hz/V and 7.8 ± 0.9 Hz/V in transmitter and receiver modes, respectively. A matching of the series and parallel resonant frequencies has been experimentally demonstrated in voltage-mode driving and sensing by applying Vb = 0 in transmission and Vb = −1.9 V in receiving, respectively, thereby obtaining the optimal acoustic emission and detection effectiveness at the same operating frequency.


Akustika ◽  
2019 ◽  
Vol 32 ◽  
pp. 79-82
Author(s):  
Valery Kirpichnikov ◽  
Lyudmila Drozdova ◽  
Alexei Koscheev ◽  
Ernst Myshinsky

The resonance frequencies of the flexural vibrations, input vibration excitability and acoustic radiation of the homogeneous and perforated plates were investigated. It is established that the average reduction range of the lower resonant frequency of flexural vibrations of the tested plates with the holes virtually coincides with the predictive estimate. The levels of the input vibration excitability of the perforated plate at the lower resonant frequencies exceeded the levels at the corresponding frequencies of the homogeneous plates greater than the calculated value. The levels of resonance acoustic radiation of the perforated plate were significantly less than of the homogeneous one.


Author(s):  
J. Hannsen Su

Abstract Conventional vibration isolation mounts are not as effective as expected on a practical foundation whose resonant frequencies normally are within the bandwidth of interest. In addition, the low frequency enhancement is a characteristic of the passive mounts. Applying inertia actuators to the bottom attachment plate of the conventional mounts overcomes these shortcomings and enhances their performance significantly. This design concept has universal application since it is applicable to any dynamic system. It requires very little power and force capacity, i.e., a small percentage of the disturbance force, from the actuators to be effective for frequencies higher than the resonant frequency of the mount itself. The effectiveness of the proposed mounts for the machinery is demonstrated on the load transmissibility reduction at the foundation support (fixed end) due to disturbance from machinery above mounts. On the other hand, the vibration magnitude reduction of equipment above mounts due to disturbance from the foundation is used for evaluating the equipment isolation effectiveness. There is no stabilty or degradation problem when a number of the passive-active mounts are used on the same foundation. Furthermore, the more of this type of mounts used on a foundation the more effective the vibration suppression and the smaller actuator force requirement for each passive-active mount.


2020 ◽  
Vol 10 (22) ◽  
pp. 8240
Author(s):  
Jiaoyan Huang ◽  
Aiguo Xia ◽  
Shenao Zou ◽  
Cong Han ◽  
Guoan Yang

Effective and accurate diagnosis of engine health is key to ensuring the safe operation of engines. Inlet distortion is due to the flow or the pressure variations. In the paper, an acoustic emission (AE) online monitoring technique, which has a faster response time compared with the ordinary vibration monitoring technique, is used to study the inlet distortion of an engine. The results show that with the deterioration of the inlet distortion, the characteristic parameters of AE signals clearly evolve in three stages. Stage I: when the inlet distortion J ≤ 30%, the characteristic parameters of the AE signal increase as J increases and the amplitude saturates at J = 23%, faster than the other three parameters (the strength, the root mean square (RMS), and the average signal level (ASL)). Stage II: when the inlet distortion 30% < J ≤ 43.64%, all the parameters saturate with only slight fluctuations as J increases and the engine works in an unstable statue. Stage III: when the inlet distortion J > 43.64%, the engine is prone to surge. Furthermore, an intelligent recognition method of the engine inlet distortion based on a unit parameter entropy and the back propagation (BP) neural network is constructed. The recognition accuracy is as high as 97.5%, and this method provides a new approach for engine health management.


Author(s):  
Sami Bedra ◽  
Siham Benkouda ◽  
Tarek Fortaki

Purpose – The paper aims to propose an artificial neural network (ANN) in conjunction with spectral domain formulation for fast and accurate determination of the resonant frequency and quality factor of circular microstrip antenna printed on isotropic or anisotropic substrate. This neurospectral approach reduces the problem complexity. Design/methodology/approach – The moment method implemented in the spectral domain provides good accuracy but its computational cost is high due to the evaluation of the slowly decaying integrals and the iterative nature of the solution process. The paper introduces the electromagnetic knowledge combined with ANN in the analysis of circular microstrip antenna on isotropic or uniaxially anisotropic substrate to reduce the complexity of the spectral approach and to minimize the CPU time necessary to obtain the numerical results. Findings – The resonant frequency results obtained from the neural model are in very good agreement with the experimental and theoretical results available in the literature. Finally, numerical results for the substrate anisotropy effect on the resonant frequency, quality factor and radiation pattern are also presented. Originality/value – The paper develops fast and accurate model based on ANN technique to calculate the resonant frequencies and quality factors of circular microstrip antennas. ANN is used to model the relationship between the parameters of the microstrip antenna and the resonant frequencies and quality factors obtained from the spectral domain approach. This relatively simple model allows designers to predict accurately the resonant frequencies and quality factors for a given design without having to develop or run the spectral method codes themselves. The main advantages of the method are: less computing time than the spectral model, results with accuracy equivalent to that of full-wave models and cost effectiveness, since the client can use a simple PC for implementation. Another advantage of the proposed ANN model is that it takes into account the uniaxial anisotropy in the substrate without increasing the network size. This is done by combining ANN with electromagnetic knowledge.


1988 ◽  
Vol 59 (3) ◽  
pp. 689-705 ◽  
Author(s):  
L. E. Moore ◽  
K. Yoshii ◽  
B. N. Christensen

1. The excitable properties of branched cells were measured using a combination of voltage-clamp and frequency-domain techniques. Point impedance functions from either the soma or growth cone of NG-108 cells were curve fitted with a reduced cable model at different membrane potentials to establish kinetic parameters. 2. Transfer impedance functions between the soma and growth cone were measured and simulated with a morphologically determined model. In these experiments the membrane potential was controlled by a single-electrode voltage clamp thus allowing an estimate of transfer functions for any arbitrary input, such as a single synaptic current for differing degrees of tonic synaptic drive. Furthermore, the integration of different regional inputs was evaluated based on the transfer functions between different locations on an individual cell. 3. The activation of an outward steady-state current leads to resonating impedance functions that were used to evaluate the kinetic properties of ionic channels in different regions of branched excitable cells. For simple branching patterns the point and transfer impedances show lower resonant frequencies for active growth cones compared with active somas. 4. More complex branching patterns showed the unexpected result that the voltage-dependent resonant frequency was higher for the growth cone recording than the soma. The presence of a higher resonant frequency when the growth cone is activated does not require more rapid kinetics of the active potassium conductance, since the time constant of the active conductance can be the same in the growth cone and the soma membrane. 5. In conclusion, the resonant frequencies, as well as all other aspects of the impedance functions, are complicated interactions of the detailed branching patterns and active conductances. In general, these interactions are not predictable from a passive electrotonic analysis, especially when the voltage-dependent conductances are distributed throughout the dendritic tree.


1998 ◽  
Vol 79 (1) ◽  
pp. 312-321 ◽  
Author(s):  
M. S. Smotherman ◽  
P. M. Narins

Smotherman, M. S. and P. M. Narins. Effect of temperature on electrical resonance in leopard frog saccular hair cells. J. Neurophysiol. 79: 312–321, 1998. Leopard frog saccular hair cells exhibit an electrical resonance in response to a depolarizing stimulus that has been proposed to contribute to the tuning properties of the frog sacculus by acting as an electrical band-pass filter. With the whole cell patch-clamp technique, we have investigated the effect of temperature on electrical resonances in isolated saccular hair cells, and we have described the effects of temperature on the currents and channel kinetics underlying electrical resonance. A hair cell's onset resonant frequency in response to a constant depolarizing current pulse increases linearly with temperature at a rate of 11 Hz/1°C, exhibiting a mean Q 10 of 1.7 between 15 and 35°C. However, offset resonant frequencies continue to double every 10°C, exhibiting a mean Q 10 of 2.1. If steady-state voltage during the stimulus is held constant, all oscillatory frequencies increase with a mean Q 10 of 2.1. The average level of steady-state depolarization during a +150-pA depolarizing current pulse decreases with increasing temperature (−6 mV from 15 to 25°C). This temperature-dependent reduction of the steady-state membrane potential causes a shift in the voltage-dependent channel kinetics to slower rates, thus reducing the apparent Q 10 for onset resonant frequencies. The peak outward tail current and net steady-state outward current, which is the sum of a voltage-dependent inward calcium current ( I Ca) and an outward calcium-dependent potassium current ( I K(Ca)), increase with temperature, exhibiting a mean Q 10 of 1.7 between 15 and 25°C. The activation rate ( T 1/2) of the outward current exhibits a mean Q 10 of 2.3 between 15 and 25°C, while the deactivation rate (τrel) exhibits a mean Q 10 of 2.9 over the same temperature range. These results support previous models of the molecular determination of resonant frequency, which have proposed that a combination of I K(Ca) channel kinetics and the overall magnitude of the outward current are primarily responsible for determining the resonant frequency of an isolated hair cell. The robust temperature sensitivity of the hair cell receptor potential contrasts sharply with the temperature-insensitive tuning properties of in vivo saccular nerve fiber recordings. Possible explanations for this discrepancy are discussed.


2016 ◽  
Vol 8 (1) ◽  
pp. 14 ◽  
Author(s):  
S. M. Abrarov ◽  
B. M. Quine

<p>This paper presents a new approach in application of the Fourier transform to the complex error function resulting in an efficient rational approximation. Specifically, the computational test shows that with only $17$ summation terms the obtained rational approximation of the complex error function provides accuracy ${10^{ - 15}}$ over the most domain of practical importance $0 \le x \le 40,000$ and ${10^{ - 4}} \le y \le {10^2}$ required for the HITRAN-based spectroscopic applications. Since the rational approximation does not contain trigonometric or exponential functions dependent upon the input parameters $x$ and $y$, it is rapid in computation. Such an example demonstrates that the considered methodology of the Fourier transform may be advantageous in practical applications.</p>


2008 ◽  
Vol 75 (2) ◽  
Author(s):  
Kai-Yu Xu ◽  
Elias C. Aifantis ◽  
Yong-Hua Yan

Free vibrations of a double-walled carbon nanotube (DWNT) are studied. The inner and outer carbon nanotubes are modeled as two individual elastic beams interacting each other by van der Waals forces. An original method is proposed to calculate the first seven order resonant frequencies and relative vibrational modes. Detailed results are demonstrated for DWNTs according to the different boundary conditions between inner and outer tubes, such as fixed-free, cantilever-free, fixed-simple and fixed-fixed (reduced form) supported ends. Our results indicate that there is a special invariable frequency for a DWNT that is not affected by different combinations of boundary conditions. All vibrational modes of the DWNT must be coaxial when the resonant frequency is smaller than this frequency. Some noncoaxial vibrations will occur when their resonant frequencies exceed the frequency. Especially, the first noncoaxial resonant frequency is still invariable for all different boundary conditions. A change of resonant frequency for various lengths of DWNTs is discussed in detail. In addition, our model predicts a new coaxial-noncoaxial vibrational mode in fixed-simple supports for inner and outer tubes of a DWNT.


Author(s):  
Jianhua Zhou ◽  
Mian Li

Uncertainty is inevitable in real world. It has to be taken into consideration, especially in engineering optimization; otherwise the obtained optimal solution may become infeasible. Robust optimization (RO) approaches have been proposed to deal with this issue. Most existing RO algorithms use double-looped structures in which a large amount of computational efforts have been spent in the inner loop optimization to determine the robustness of candidate solutions. In this paper, an advanced approach is presented where no optimization run is required to be performed for robustness evaluations in the inner loop. Instead, a concept of Utopian point is proposed and the corresponding maximum variable/parameter variation will be obtained by just solving a set of linear equations. The obtained robust optimal solution from the new approach may be conservative, but the deviation from the true robust optimal solution is very small given the significant improvement in the computational efficiency. Six numerical and engineering examples are tested to show the applicability and efficiency of the proposed approach, whose solutions and computational time are compared with those from a similar but double-looped approach, SQP-RO, proposed previously.


Sign in / Sign up

Export Citation Format

Share Document