scholarly journals Evaluation of Drug Release from Carboxymethyl Starch-Xanthan Gum-HPMC Matrix

2021 ◽  
Vol 11 (5) ◽  
pp. 27-32
Author(s):  
Amit Kumar Verma ◽  
Arun Kumar ◽  
Subbiah Ramasamy ◽  
Ajit Kumar Yadav ◽  
Rohit Kumar Bijauliya

The use of hydrophilic polymers from natural origin. Especially the polysaccharides have been the focus of current research activity in the design of matrix device due to their non toxic, biocompatible, biodegradable nature and broad regulatory acceptance. A large number of polysaccharides such as Carboxymethyl starch, Xanthan gum, Hydroxy propyl methyl cellulose (HPMC), Sodium Alginate etc, have been used as hydrophilic matrices to investigate release behavior of drug. In order to enrich the resources, there is a quest for new polysaccharide owing to their diverse chemical composition and functional groups are amenable to chemical modification and thus tailor made polymeric matrices are obtained which which can be used to modulate oral drug release. The objective of the study is to characterize Verapamil hydrochloride loaded matrix dosage form using hydroxy propyl methyl cellulose (HPMC), xanthan gum, corn starch as rate retarding polymer. Dosage forms were prepared using different polymers along with drug Verapamil hydrochloride. Carboxymethylation was performed. Drug release was evaluated in simulated gastric media. Addition of xanthan gum significantly retarded the burse release of drug. The retardation of drug release was found to be dependent upon the concentration. The formulation composed of HPMC K4M and CS (ARI-ARI3) followed super case transport is swelling controlled, purely relaxation controlled drug delivery. Keywords: Verapamil HCl, Natural gums, xanthan gum, HPMC, sustained release

Author(s):  
Parasuram Rajam Radhika ◽  
Nishala N ◽  
Kiruthika M ◽  
Sree Iswarya S

Objective: The present study was undertaken to prolong the release of orally administered drug. The aim is to formulate, develop, and evaluate theintragastric buoyant tablets of venlafaxine hydrochloride, which releases the drug in a sustained manner over a period of 12 hrs. Different formulationswere formulated using the polymers Carbopol 934 P, xanthan gum, hydroxypropyl methylcellulose (HPMC K100M) with varying concentration ofdrug: Polymer ratio of 1:1, 1:1.5, 1:2, in which sodium bicarbonate acts as gas generating agent, and microcrystalline cellulose as a diluent.Methods: The tablets were prepared by direct compression and evaluated for tablet thickness, weight variation, tablet hardness, friability, in vitrobuoyancy test, in vitro drug release and Fourier transform infrared spectroscopy. Formulations were evaluated by floating time, floating lag time and in vitro drug release. Dissolution profiles were subjected for various kinetic treatments to analyze the release pattern of drug.Results: It was found that drug release depends on swelling, erosion, and diffusion, thus following the non-Fickian/anomalous type of diffusion.Formulation F8 was considered as an optimized formulation for gastro retentive floating tablet of venlafaxine hydrochloride. The optimizedformulation showed sustained drug release and remained buoyant on the surface of the medium for more than 12 hrs. As the concentration of HPMCK100M increases in the formulation the drug release rate was found to be decreased. The optimized formulation was subjected for the stability studiesand was found to be stable as no significant change was observed in various evaluated parameters of the formulation.Conclusion: It can be concluded that floating drug delivery system of venlafaxine hydrochloride can be successfully formulated as an approach toincrease gastric residence time, thereby improving its bioavailability.Keywords: Venlafaxine hydrochloride, Intragastric buoyant, Floating drug delivery systems, Hydroxypropyl methyl cellulose K100M, Carbopol 934 P,Xanthan gum.


Author(s):  
K. Pallavi ◽  
T. Pallavi

Objective: The main aim of the present research was to develop an oral fast dissolving polymeric film (FDF) with good mechanical properties, faster disintegration and dissolution when placed on the tongue.Methods: Eletriptan hydrobromide is prescribed for the treatment of mild to a moderate migraine. The polymers selected for preparing films were Pullulan, Maltodextrin (MDX), Acacia, Sodium alginate (SA), Locust bean gum (LBG), Guar gum (GG), Xanthan gum (XG), Polyvinyl alcohol (PVA), Polyvinyl pyrrolidine (PVP), Hydroxyl propyl methyl cellulose (HPMC) E5, and HPMC E15. Twelve sets of films FN1–FN12 were prepared by solvent casting method with Pullulan and combination of Acacia, MDX, SA, LBG, GG, XG, PVA, PVP, HPMC E5 and HPMC E15. Five sets of films FS1–FS5 were prepared using synthetic polymers like PVA, PVP, HPMC E5 and HPMC E15.Results: From all the prepared polymer formulations, FN2, FN8, and FS3 were selected based on disintegration time, and drug release and amongst this three FN2 was optimised based on its disintegration time (D. T). The percent drug release of the optimised film was compared with the percent release of the pure drug.Conclusion: The optimised formulation had a D. T of 16 s and a percent drug release of 97.5% in 10 min in pH 6.8 phosphate buffer and 100.6% drug release in 10 min in 0.1N HCl.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Teresa Nabais ◽  
Grégoire Leclair

Substituted amylose (SA) polymers were produced from high-amylose corn starch by etherification of its hydroxyl groups with chloroacetate. Amorphous high-amylose sodium carboxymethyl starch (HASCA), the resulting SA polymer, was spray-dried to obtain an excipient (SD HASCA) with optimal binding and sustained-release (SR) properties. Tablets containing different percentages of SD HASCA and tramadol hydrochloride were produced by direct compression and evaluated for dissolution. Once-daily and twice-daily SD HASCA tablets containing two common dosages of tramadol hydrochloride (100 mg and 200 mg), a freely water-soluble drug, were successfully developed. These SR formulations presented high crushing forces, which facilitate further tablet processing and handling. When exposed to both a pH gradient simulating the pH variations through the gastrointestinal tract and a 40% ethanol medium, a very rigid gel formed progressively at the surface of the tablets providing controlled drug-release properties. These properties indicated that SD HASCA was a promising and robust excipient for oral, sustained drug-release, which may possibly minimize the likelihood of dose dumping and consequent adverse effects, even in the case of coadministration with alcohol.


Author(s):  
Md. Kamruzzaman Akanda ◽  
SM Ashraful Islam ◽  
Jakir Ahmed Chowdhury ◽  
Md. Selim Reza

Acetaminophen loaded suppositories were prepared and the effects of viscosity imparting agents on drug release were investigated. Suppositories containing 125 mg of acetaminophen were prepared by fusion method using PEG 4000 and PEG 1500 as hydrophilic base. In vitro dissolution studies were carried out by a thermal shaker with a shaking speed of 90 rpm at a temperature of 37 ± 0.50C in phosphate buffer of pH 6.8. The effect of viscosity imparting agents on the drug release into phosphate buffer were investigated by adding 0.1, 0.2 and 0.3% Xanthan gum, sodium carboxy methyl cellulose, acacia, hydroxyl propyl methyl cellulose 15 cps and 50 cps. The In vitro release data showed that drug release was linear in phosphate buffer. After incorporation of viscosity imparting agents in phosphate buffer a biphasic drug release profile i.e. initial lag phase followed by linear phase was observed. Lag time depends on nature and concentration of viscosity imparting agents. It is evident from the result that lag time increases with the increase in percentage of viscosity imparting agent. There is less or no effect of change of concentration of acacia on the lag time. After lag time drug release from the suppositories showed a linear fashion. It was found that the release rate decreases when dissolution medium contains high percentage of Xanthan gum and also sodium carboxy methyl cellulose. However in case of incorporation of HPMC into the dissolution medium, release rate decreased up to 0.2% HPMC, but with 0.3% HPMC the release rate increased. Inclusion of different percentage of acacia into the dissolution medium has not significantly changed the release of acetaminophen from suppositories. Key words: Suppositories, Acetaminophen, Viscosity imparting agent Dhaka Univ. J. Pharm. Sci. Vol.4(1) 2005 The full text is of this article is available at the Dhaka Univ. J. Pharm. Sci. website


Author(s):  
Sudarshan Singh ◽  
Hitesha Goswami

The plant derived gums and mucilage’s comply with many requirements of pharmaceutical excipients as they are non-toxic, stable, easily available, associated with less regulatory issues as compared to their synthetic counterpart and inexpensive; also these can be easily modified to meet the specific need. The present study was undertaken to isolate mucilage from the seeds of Pithecellobium dulce (P. dulce). The mucilage isolated from P. dulce were used as a bioadhesive polymer in tablet formulation and evaluated for the parameters such as swelling, pH, and bioadhesive property like bioadhesive strength, and ex-vivo residence time. The oral mucoadhesive tablets were prepared using Pioglitazone as model drug and P. dulce seeds mucilage as mucoadhesive polymer. The prepared tablets were evaluated against existing mucoadhesive polymer such as Xanthan gum and Hydroxyl Propyl Methyl Cellulose K4M to explore its use as Pharmaceutical excipients. Swelling index of P. dulce was found to be 87.46 ± 0.11 % which was higher than Xanthan gum but lower than HPMC K4M having swelling index 73.28 ± 0.01 % and 98.88 ± 0.03 % respectively. The results showed that Bioadhesion strength of P. dulce was found to be 50.86 ± 0.03N which was higher than HPMC K4M but lower than Xanthan gum having Force of adhesion 32.81 ± 0.04N and 57.17 ± 0.01N respectively. The percentage cumulative drug release drug release of optimize batch F8 was found to be 101.71 %. So, it was concluded that the mucilage of P. dulce can be used as a pharmaceutical excipient in oral bioadhesive drug delivery systems.


2016 ◽  
Vol 14 (2) ◽  
pp. 187-192
Author(s):  
Muhammad Rashedul Islam ◽  
Md Elias Al Mamun ◽  
Md Mizanur Rahman Moghal ◽  
Md Habibur Rahman

In the present work, several batches of indomethacin press coated tablets were prepared with drug and Avicel PH 102 utilizing the press coating technology. The core tablet was compression coated with minimal compression pressure. The compression coating mixture was formulated using various amount of lactose and xanthan gum which was used as the release retarding agent. Three formulations (IX-1, IX-2 and IX-3) were designed to evaluate the release profile as function of xanthan gum load. In vitro drug release testing demonstrated that the drug release was inversely proportional to the amount of xanthan gum in the coating formulations. In addition, formulation IX-2 was modified by incorporating hydroxypropyl methyl cellulose (HPMC) 15 cps into the compression coating formulation to understand their effects on drug release. The formulation was evaluated for its properties and correlated with in vitro and kinetic release studies. Incorporation of HPMC caused the highest fraction of drug to be released in the dissolution fluid. The physico-chemical properties of the excipients can be held responsible for the discrepancy in release rate of indomethacin. From kinetic analysis drug release was found to follow Higuchi mechanism for all the formulations. Overall, the study concluded that excipients present in the coating formulations make a significant impact on drug release.Dhaka Univ. J. Pharm. Sci. 14(2): 187-192, 2015 (December)


Author(s):  
Kranthi Kumar Kotta ◽  
L. Srinivas

The present investigation focuses on the development of mucoadhesive tablets of captopril which are designed to prolong the gastric residence time after oral administration. Matrix tablets of captopril were formulated using four mucoadhesive polymers namely guar gum, xanthan gum, HPMC K4M and HPMC K15M and studied for parameters such as weight variation, thickness, hardness, content uniformity, swelling index, mucoadhesive force and in vitro drug release. Tablets formulated Xanthan gum or HPMC K4M with HPMC K15M provide slow release of captopril over period of 12 hr and were found suitable for maintenance portion of oral controlled release tablets. The cumulative % of drug release of formulation F9 and F10 were 90 and 92, respectively. In vitro release from these tablets was diffusion controlled and followed zero order kinetics. The ‘n’ values obtained from the pappas-karsemeyer equation suggested that all the formulation showed drug release by non-fickian diffusion mechanism. Tablets formulated Xanthan gum or HPMC K4M with HPMC K15M (1:1) were established to be the optimum formulation with optimum bioadhesive force, swelling index & desired invitro drug release. This product was further subjected to stability study, the results of which indicated no significant change with respect to Adhesive strength and in vitro drug release study.


Author(s):  
Sakthikumar T ◽  
Rajendran N N ◽  
Natarajan R

The present study was aimed to develop an extended release tablet of metoprolol Succinate for the treatment of hypertension.  Four extended release formulations F1-F4 were developed using varying proportions of hydroxylpropyl-methylcellulose K100M, sodium carboxy methyl cellulose and Eudragit L30 D55 by wet granulation. Five extended release formulations F5-F9 containing HPMC K100M and HPMC 5 cps in varying concentration were developed by direct compression. The physicochemical and in vitro release characteristics of all the formulations were investigated and compared. Two formulations, F7 and F8 have shown not more 25% drug release  in 1st h, 20%-40% drug release at 4th hour, 40%-60% drug release at 8th hour and not less than 80% at 20th hour and the release pattern conform with USP specification for 24 hours extended release formulation. It can be conclusively stated that optimum concentration of HPMC K100M (58%-65%) by direct compression method can yield an extended release of metoprolol succinate for 24 hours.


2020 ◽  
Vol 16 (1) ◽  
pp. 43-60 ◽  
Author(s):  
Priyanka Kriplani ◽  
Kumar Guarve ◽  
Uttam Singh Baghel

Background: Osteoarthritis (OA) ranks fifth among all forms of disability affecting 10% of the world population. Current treatments available are associated with multiple side effects and do not slow down the progression of the disease. Moreover, no such effective treatment is available to date in various systems of medicine to treat osteoarthritis. Curcumin and Arnica have shown evident clinical advances in the treatment of osteoarthritis. Objective: The aim of the present study was to design, optimize and characterize novel herbal transdermal patches of curcumin and Arnica montana using factorial design. Methods: A multiple factorial design was employed to investigate the effect of hydroxypropyl methyl cellulose, ethyl cellulose and jojoba oil on elongation and drug release. Transdermal patches were evaluated by FTIR, DSC, FESEM, ex vivo drug permeation, anti osteoarthritic activity and analgesic activity. Results: Independent variables exhibited a significant effect on the physicochemical properties of the prepared formulations. The higher values of drug release and elongation were observed with the higher concentration of hydroxypropyl methylcellulose and jojoba oil. Anti osteoarthritic activity was assessed by complete Freund's adjuvant arthritis model; using rats and analgesic activity by Eddy's hot plate method, using mice. Combination patch exhibited good anti osteoarthritic and analgesic activity as compare to individual drug patches. Conclusion: The design results revealed that the combination patch exhibited good physicochemical, anti osteoarthritic and analgesic activity for the treatment of osteoarthritis in animals. More plants and their combinations should be explored to get reliable, safe and effective formulations that can compete with synthetic drugs.


Sign in / Sign up

Export Citation Format

Share Document