scholarly journals Tablet Formulation Studies on Recrystallized Active Pharmaceutical Ingredients of Valsartan and Olmesartan Medoxomil

2021 ◽  
Vol 11 (6-S) ◽  
pp. 1-8
Author(s):  
TP. Rao ◽  
Buchi N. Nalluri

Both the Valsartan (VAL) and Olmesartan medoxomil (OLM) are widely prescribed anti-hypertensive agents with angiotensin II type I receptor antagonistic activity. Both VAL and OLM are type of BCS class II drugs and having a low and variable oral bioavailability.  Recrystallization of VAL and OLM from different organic solvents improved its aqueous solubility and thereby in vitro dissolution properties. In the present investigation, tablets containing Valsartan (VAL), Olmesartan medoxomil (OLM and)  recrystallized products were prepared by  direct compression method and evaluated for drug content, uniformity of weight, hardness, friability, disintegration time and dissolution properties. All the tablets fulfilled the compendial requirements with regarding to weight variation, friability and disintegration time etc for immediate release tablets.  The DP15 (drug percent dissolved at 15 min) values for V-1 (tablets of VAL), V-4 (tablets of methanol recrystallized product with crospovidone as disintegrant) and DIOVAN™ 40mg tablet formulations are 45.97,  98.95 and 82.65 respectively and V-4 formulation showed higher dissolution rate when compared to other formulations. The DP15 values of O-1(tablets of OLM), O-4 (tablets of acetonitrile recrystallized product with crospovidone as disintegrant and OLMY™ (20mg) tablet formulations are 29.25, 99.93 and 84.82 respectively. O-4 tablet formulations showed higher dissolution rate when compared to other tablet formulations. Keywords: Valsartan, Olmesartan medoxomil, Recrystallization, Aqueous solubility

Author(s):  
Ganesh kumar Gudas ◽  
Manasa B ◽  
Senthil Kumaran K ◽  
Rajesham V V ◽  
Kiran Kumar S ◽  
...  

Promethazine.HCl is a potent anti-emetic. The central antimuscarinic actions of antihistamines are probably responsible for their anti-emetic effects. Promethazine is also believed to inhibit the medullary chemoreceptor trigger zone, and antagonize apomorphine -induced vomiting. Fast dissolving tablets of Promethazine.HCl were prepared using five superdisintegrants viz; sodium starch glycolate, crospovidone, croscarmellose, L-HPC and pregelatinised starch. The precompression blend was tested for angle of repose, bulk density, tapped density, compressibility index and Hausner’s ratio. The tablets were evaluated for weight variation, hardness, friability, disintegration time (1 min), dissolution rate, content uniformity, and were found to be within standard limit. It was concluded that the fast dissolving tablets with proper hardness, rapidly disintegrating with enhanced dissolution can be made using selected superdisintegrants. Among the different formulations of Promethazine.HCl was prepared and studied and the formulation S2 containing crospovidone, mannitol and microcrystalline cellulose combination was found to be the fast dissolving formulation. In the present study an attempt has been made to prepare fast dissolving tablets of Promethazine.HCl, by using different superdisintegrants with enhanced disintegration and dissolution rate. 


2017 ◽  
Vol 9 (6) ◽  
pp. 39
Author(s):  
Zainab E. Jassim

Objective: The purpose of this study was to enhance the dissolution pattern of the practically water-insoluble diuretic drug, furosemide through its formulation into liquisolid tablets.Methods: A mathematical model was used to formulate four liquisolid powder systems using polyethylene glycol 400 as a non-volatile water miscible liquid vehicle. The liquid loading factors of the vehicle were used to calculate the optimum quantities of carrier (Avicel PH 102) and coating materials (Aerosil 200) needed to prepare acceptably flowing and compactible powder mixtures and (R) ratio used was 25. The liquisolid tablets were evaluated for weight variation, percent friability, hardness, content uniformity, disintegration time and in vitro drug release profile. Drug and the prepared systems were characterized by fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and powder x-ray diffraction (PXRD) studies.Results: The enhanced dissolution rate due to the increased wetting properties and the large available surface areas for dissolution were obtained in case of the liquisolid tablets. The selected optimal formulation (F2) of 50% drug concentration released 90% of its content during the first 10 min compared to 65% of DCT. FTIR studies revealed that there was no interaction between drug and polymers. DSC and PXRD indicated conversion of crystalline to amorphous form of furosemide. Conclusion: The dissolution rate of furosemide can be enhanced to a great extent by liquisolid technique.


Author(s):  
K Kareemuddin Ansari ◽  
Neeraj Sharma

Valdecoxib is a selective COX- II inhibitor with anti – inflammatory, analgesic and antipyretic properties. The poor aqueous solubility of the drug leads to variable dissolution rates. In the present study an attempt has been made to prepare fast dissolving tablets of Valdecoxib in the oral cavity with enhanced dissolution rate. The fast dissolving tablets of Valdecoxib was prepared with some carriers (polymers) and super disintegrants such as Polyvinyl Pyrrolidone (PVP), Sodium Carboxy Methyl Cellulose (SCMC), Crospovidone NF and β – Cyclodextrin. The above mentioned all carriers and superdisintegrants were taken in different proportions of 5, 10, and 15%. All the formulations of the fast dissolving tablets of Valdecoxib were prepared by direct compression technique. The blend was examined for Angle of repose, Bulk density, Compressibility index and Hausner’s ratio. The prepared tablets were evaluated for hardness, drug content uniformity, friability, disintegration time and dissolution rate. An effective pleasant testing formulation released 99.88% drug within 10 minutes. The prepared formulations drug release was found to be comparable with the marketed dispersible tablets. Keywords: Fast dissolving tablets, Super-disintegrants, Valdecoxib, Crosspovidone, Sodium Carboxy Methyl Cellulose.


2018 ◽  
Vol 6 (3) ◽  
pp. 5-16 ◽  
Author(s):  
ABRAHAM LINKU ◽  
JOSEPH SIJIMOL

The aim of present work was the development of fast dissolving oral film of Loratadine to overcome the limitations of current routes of administration, to provide immediate action and increase the patient compliance. To improve the bioavailability of the drug, fast dissolving oral film were formulated using different grades of Hydroxy Propyl Methyl Cellulose(HPMC) and various plasticizers like Polyethylene Glycol(PEG) 400, glycerol, Propylene glycol(PG) by solvent casting method. The formulated films were evaluated for film thickness, surface pH, folding endurance, weight variation, % moisture loss, exvivo permeation study, tensile strength, % elongation, drug content uniformity, in vitro dissolution studies,in vitro disintegration test and in vivo study. The optimized formulation (F9) containing HPMC E5 and glycerol showed minimum disintegration time (10.5 s), highest in vitrodissolution (92.5%) and satisfactory stability. Ex vivo permeation study of optimized formulation showed a drug release of 80.6% within 10 min. The milk induced leucocytosis inrat proved that fast dissolving oral films of Loratadine produced a faster onset of action compared to the conventional tablets. These findings suggest that fast dissolving oral film of Loratadine could be potentially useful for treatment of allergy where quick onset of action is required.


Author(s):  
N. G. Rao ◽  
Upendra Kulkarni ◽  
Hari Prassanna C. ◽  
Basawaraj Patil ◽  
Rabbani G.

Felodipine which is used in the present study is a dihydropyridine derivative, that is chemically described as ethyl methyl-4-(2, 3-dichlorophenyl)-1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate, widely accepted for its excellent antihypertensive and anti-anginal properties since it is calcium antagonist compound (calcium channel blocker). Felodipine is practically insoluble in water and its dissolution rate is limited by its physicochemical properties. In the present study fast disintegrating tablets of felodipine were prepared by adopting vacuum drying technique to study the effect of different subliming agents with various concentrations on disintegrating time. The powder blend was examined for the pre-compressional parameters. The prepared formulations were evaluated for post-compressional analysis for the parameters like hardness, friability, thickness, wetting time, water absorption ratio, weight variation, in-vitro disintegration time, in- vitro dispersion time, in-vitro dissolution study. Drug compatibility with excipients was checked by FTIR studies. The results obtained showed that quantity of ammonium bicarbonate, urea and menthol significantly affect the response variables (P> 0.05). No chemical interaction between drug and excipients was confirmed by FTIR studies. Stability studies carried out as per ICH guidelines for three months and results revealed that upon storage disintegration time of tablets decreased significantly (P> 0.05). The results concluded that fast disintegrating tablets of felodipine showing enhanced dissolution rate with increasing the concentrations of subliming agents. Among all the formulations A3 and M3 shows the improved dissolution rate which lead to improved bioavailability and effective therapy by using vacuum drying technique.


Author(s):  
CH. DHANA SUBRAHMANYESWARI ◽  
Y. PRASANTH ◽  
SAMEEDA RUBEEN

Objective: The present study is to formulate and development of efavirenz tablets by paper technique using the co-solvency method, the drug is antiviral drug used for the treatment of HIV. Methods: In this 7 formulation (F1-F7) were prepared by using different tissue papers like kitchen roll paper, hand kercheif paper, facial tissue paper, with different weights. The prepared tablets were evaluated for hardness, friability, thickness, content uniformity, disintegration time and in vitro dissolution study. Results: Among all the formulations, F2 (kicthen roll paper with weight 250 mg) was consired to be the best formulation, which release up to 98.02% drug in 3 h. The results of stability studies of formulation F2 after a period of 2 mo indicated that the formulation was stable. Conclusion: It was concluted that a paper tablet of efavirenz shows better results and it does not contain any excipient and increase the dissolution rate.


Author(s):  
K. Sampath Kumar ◽  
D. Maheswara Reddy ◽  
Y. Dastagiri Reddy ◽  
J. Balanarasimha Goud ◽  
Abdul Basith

Background: The concept of formulating ODT containing montelukast sodium offers an appropriate, practical approach to accomplish fast release of the drug. Absorption of these tablets takes place directly into the systemic circulation which bipass the hepatic first-pass metabolism of montelukast sodium which ultimately results in the improvement in the bioavailability. Method: In the present study ODT tablets of montelukast sodium were prepared by using different Superdisintegrants like natural and synthetic (tulasi, hibiscus, orange peel powder, Ispaghula, banana peel powder, Crospovidone). Thirteen formulations were designed, using a two level of Superdisintegrants (minimum and maximum concentration) and employing two Superdisintegrants at a time by using the co-processed technique. Results: No significant drug and excipients interaction was observed. The prepared tablets were evaluated by weight variation, thickness, hardness, friability, drug content uniformity, disintegration time, wetting time, in-vitro dissolution studies. A formulation containing 6mg of natural and synthetic Superdisintegrants was offered the relatively rapid release of montelukast sodium when compared with other concentrations employed in this investigation. Conclusion: Montelukast sodium formulation were prepared by Crospovidone and ispaghula combination of Superdisintegrants were releases 98.91% drug in 30 min.


Author(s):  
Amina Moustafa Mohammed ◽  
Entidhar Jasim Mohammed

Liquisolid compact is the most promising technique for increasing dissolution rate and bioavailability of poorly soluble drugs.Clopidogrel bisulfate is an oral antiplatelets used for treatment and prophylaxis of cardiovacular and peripheral vascular diseases related to platelets aggreagation.Clopidogrel has low solubility at high pH media of intestine and low bioavailability of a bout 50% after oral doses.The purpose of this work was to enhance dissolution pattern of clopidogrel through its formulation into liquisolid tablets.A mathematical model was used to calculate the optimum quantities of tween 80 , carrier (Avicel PH 102) and coating material (Aerosil 200) needed to prepare acceptably flowing and compactible powder mixtures.The liquisolid tablets were evaluated for hardness, percent friability, weight variation, content uniformity , disintegration time and in vitro drug release profile.DSC , FTIR , XRD and SEM were used for assessment of physicochemical properties of drug and compatibility with excipients in the liquisolid compacts.The selected formulation (F2) released 92.2% of its content during first 10 min. compared to 13.6% of directly compressed tablet and 24.2% of marketed tablet. In conclusion the dissolution rate and bioavailability of clopidogrel can be enhanced to a great extent by liquisolid technique.


INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (01) ◽  
pp. 34-40
Author(s):  
V.L Narasaiah ◽  
◽  
Ch. Praneetha ◽  
P Mallika ◽  
K. Pullamma ◽  
...  

The aim of this project was to develop fast dissolving tablets (FDT) of aceclofenac by wet granulation using super disintegrating agents such as cross carmellose sodium (CCS), Crospovidone (CP) and sodium starch glycolate (SSG) were formulated and evaluated. The tablets evaluated for thickness, hardness, friability weight variation, drug content, water absorption ratio, wetting time, disintegration time and in vitro dissolution studies. The in vitro release studies were conducted in pH 7.4 phosphate buffer. Different release models like zero order, first order, Higuchi and Korsmeyer-Peppas were applied to in vitro drug release data in order to evaluate drug release mechanisms and kinetics. The formulation ‘F4’ showed satisfactory physico-chemical properties and drug content uniformity. The formulation ‘F4’ follows first order kinetics and the mechanism of drug release was governed by Higuchi. The ‘n’ value showed between <0.5, it was followed that Fickian transport. The FTIR studies were conducted and it shows that there is no interaction between drug and excipients.


2019 ◽  
Vol 22 (2) ◽  
pp. 228-234 ◽  
Author(s):  
Sreebash Chandra Bhowmik ◽  
Marzia Alam ◽  
Md Saiful Islam Pathan

The purpose of the current study was to develop a fast dissolving polymeric oral thin film containing palonosetron hydrochloride having good mechanical properties, fast disintegration, dissolution and good drug content uniformity. Solvent casting method was used to prepare the films. Compatibility between drugs and excipients were studied using FTIR and HPLC. Nine different formulations of film from F1 to F9 were prepared using different concentration of polymer A at drug-polymer A ratio (1:26), (1:28), (1:30), (1:32), (1:34), (1:36), (1:38), (1:40), (1:42) and at polymer A-plasticizer B of (65:10), (70:10), (75:10), (40:10), (42.5:10), (45:10), (47.5:10), (50:10), (52.5:10), respectively. The in vitro dissolution study was carried out in phosphate buffer (pH 6.8) at 37±0.5oC and 50 rpm using USP XXIV paddle method. Physicochemical evaluations of all the batches were performed including weight variation, thickness, folding endurance, pH, in vitro disintegration and drug release, FTIR and content uniformity test. Maximum and minimum drug dissolution were found in F6 (108.7%) and in F1 (98.5%), respectively. The maximum and minimum disintegration time were in F9 (43.8 sec) and F1 (25 sec), respectively which demonstrated that disintegration of the film was directly proportional to the polymer A and plasticizer B concentration. It is quite evident from the present research work that the film prepared using polymer A-plasticizer B were smooth, mechanically strong and easy to peel out. Among all the batches, formulation F5 showed best results with respect to disintegration (33 sec), drug dissolution (105%), content uniformity (98.51%) and folding endurance (731). Therefore, it can be said that combination of polymer A and plasticizer B can be prospectively used for the preparation of palonosetron hydrochloride oral thin film. Bangladesh Pharmaceutical Journal 22(2): 228-234, 2019


Sign in / Sign up

Export Citation Format

Share Document