scholarly journals Mesonic correlators at non-zero baryon chemical potential

2020 ◽  
Author(s):  
Aleksandr Nikolaev ◽  
Gert Aarts ◽  
Chris Allton ◽  
Davide De Boni ◽  
Jonas Glesaaen ◽  
...  
Particles ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 178-192 ◽  
Author(s):  
O. Soloveva ◽  
P. Moreau ◽  
L. Oliva ◽  
V. Voronyuk ◽  
V. Kireyeu ◽  
...  

We study the influence of the baryon chemical potential μ B on the properties of the Quark–Gluon–Plasma (QGP) in and out-of equilibrium. The description of the QGP in equilibrium is based on the effective propagators and couplings from the Dynamical QuasiParticle Model (DQPM) that is matched to reproduce the equation-of-state of the partonic system above the deconfinement temperature T c from lattice Quantum Chromodynamics (QCD). We study the transport coefficients such as the ratio of shear viscosity η and bulk viscosity ζ over entropy density s, i.e., η / s and ζ / s in the ( T , μ ) plane and compare to other model results available at μ B = 0 . The out-of equilibrium study of the QGP is performed within the Parton–Hadron–String Dynamics (PHSD) transport approach extended in the partonic sector by explicitly calculating the total and differential partonic scattering cross sections based on the DQPM and the evaluated at actual temperature T and baryon chemical potential μ B in each individual space-time cell where partonic scattering takes place. The traces of their μ B dependences are investigated in different observables for symmetric Au + Au and asymmetric Cu + Au collisions such as rapidity and m T -distributions and directed and elliptic flow coefficients v 1 , v 2 in the energy range 7.7 GeV ≤ s N N ≤ 200 GeV.


2018 ◽  
Vol 172 ◽  
pp. 08002
Author(s):  
Alejandro Ayala ◽  
Jorge David Castaño-Yepes ◽  
José Antonio Flores ◽  
Saúl Hernández ◽  
Luis Hernández

We study the QCD phase diagram using the linear sigma model coupled to quarks. We compute the effective potential at finite temperature and quark chemical potential up to ring diagrams contribution. We show that, provided the values for the pseudo-critical temperature Tc = 155 MeV and critical baryon chemical potential μBc ≃ 1 GeV, together with the vacuum sigma and pion masses. The model couplings can be fixed and that these in turn help to locate the region where the crossover transition line becomes first order.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Guruprasad Kadam ◽  
Swapnali Pawar

We study the equation of state (EoS) of hot and dense hadron gas by incorporating the excluded volume corrections into the ideal hadron resonance gas (HRG) model. The total hadron mass spectrum of the model is the sum of the discrete mass spectrum consisting of all the experimentally known hadrons and the exponentially rising continuous Hagedorn states. We confront the EoS of the model with lattice quantum chromodynamics (LQCD) results at finite baryon chemical potential. We find that this modified HRG model reproduces the LQCD results up to T=160 MeV at zero as well as finite baryon chemical potential. We further estimate the shear viscosity within the ambit of this model in the context of heavy-ion collision experiments.


2018 ◽  
Vol 171 ◽  
pp. 02001
Author(s):  
Yvonne Leifels

Strangeness production in heavy-ion reactions at incident energies at or below the threshold in NN collisions gives access to the characteristics of bulk nuclear matter and the properties of strange particles inside the hot and dense nuclear medium, like potentials and interaction cross sections. At these energies strangeness is produced in multi-step processes potentially via excitation of intermediate heavy resonances. The amount of experimental data on strangeness production at these energies has increased substantially during the last years due to the FOPI and the HADES experiments at SIS18 at GSI. Experimental data on K+ and K0 production support the assumption that particles with an s quark feel a moderate repulsive potential in the nuclear medium. The situation is not that clear in the case of K-. Here, spectra and flow of K- mesons is influenced by the contribution of ø mesons which are decaying into K+K- pairs with a branching ratio of 48.9 %. Depending on incident energy upto 30 % of all K- mesons measured in heavyion collisions are originating from ø-decays. Strangeness production yields - except the yield of Ξ- are described by thermal hadronisation models. Experimental data not only measured for heavy-ion collisions but also in proton induced reactions are described with sets of temperature T and baryon chemical potential μb which are close to a universal freeze-out curve which is fitting also experimental data obtained at lower baryon chemical potential. Despite the good description of most particle production yields, the question how this is achieved is still not settled and should be the focus of further investigations.


2017 ◽  
Vol 26 (07) ◽  
pp. 1750046
Author(s):  
Abdel Nasser Tawfik ◽  
Magda Abdel Wahab ◽  
Hayam Yassin ◽  
Eman R. Abo Elyazeed ◽  
Hadeer M. Nasr El Din

From a systematic analysis of the energy-dependence of four antibaryon-to-baryon ratios relative to the antikaon-to-kaon ratio, we propose an alternative approach determining the strange-quark chemical potential ([Formula: see text]). It is found that [Formula: see text] generically genuinely equals one-fifth the baryon chemical potential ([Formula: see text]). An additional quantity depending on [Formula: see text] and the freezeout temperature ([Formula: see text]) should be added in order to assure averaged strangeness conversation. This quantity gives a genuine estimation for the possible strangeness enhancement with the increase in the collision energy. At the chemical freezeout conditioned to constant entropy density normalized to temperature cubed, various particle ratios calculated at [Formula: see text] and [Formula: see text] and the resultant [Formula: see text] excellently agree with the statistical-thermal calculations.


2013 ◽  
Vol 22 (11) ◽  
pp. 1350077 ◽  
Author(s):  
TRAN HUU PHAT ◽  
NGUYEN TUAN ANH ◽  
PHUNG THI THU HA

We study systematically various types of phase transitions in nuclear matter at finite temperature T and baryon chemical potential μ based on the extended linear sigma model with nucleon degrees of freedom. It is shown that there are three types of phase transitions in nuclear matter: the chiral symmetry nonrestoration (SNR) at high temperature, the well-known liquid–gas (LG) phase transition at sub-saturation density and the Lifshitz phase transition (LPT) from the fully-gapped state to the state with Fermi surface. Their phase diagrams are established in the (T, μ)-plane and their physical properties are investigated in detail. The relationship between the chiral phase transition and the LG phase transition in nuclear matter is discussed.


2017 ◽  
Vol 32 (11) ◽  
pp. 1750061 ◽  
Author(s):  
Wenkai Fan ◽  
Xiaofeng Luo ◽  
Hong-Shi Zong

We evaluate the second to fourth-order baryon, charge and strangeness susceptibilities near a chiral critical point using the Nambu–Jona-Lasinio model under different temperatures and baryon chemical potential. Baryon number susceptibilities are found to be of the greatest magnitude, offering the strongest signal. Whereas the strangeness susceptibilities have the smallest divergence dominating area, owing to the large strange quark mass. We also make an attempt to compare our results with experiment data. The trend at high collision energy is found to be consistent between theory and experiment. The model calculation predicts more complex behavior at low collision energies, near the postulated critical end point.


Sign in / Sign up

Export Citation Format

Share Document