scholarly journals The depth of the shower maximum of air showers measured with AERA

2021 ◽  
Author(s):  
Bjarni Pont ◽  
Pedro Abreu ◽  
Marco Aglietta ◽  
Justin M. Albury ◽  
Ingomar Allekotte ◽  
...  
Keyword(s):  
2019 ◽  
Vol 210 ◽  
pp. 05008
Author(s):  
Laura Valore ◽  

The atmospheric aerosol monitoring system of the Pierre Auger Observatory has been operating smoothly since 2004. Two laser facilities (Central Laser Facility, CLF and eXtreme Laser Facility, XLF) fire sets of 50 shots four times per hour during FD shifts to measure the highly variable hourly aerosol attenuation to correct the longitudinal UV light profiles of the Extensive Air Showers detected by the Fluorescence Detector. Hourly aerosol attenuation loads (Vertical Aerosol Optical Depth) are used to correct the measured profiles. Two techniques are used to determine the aerosol profiles, which have been proven to be fully compatible. The uncertainty in the VAOD profiles measured consequently leads to an uncertainty on the energy and on the estimation of the depth at the maximum development of a shower (Xmax) of the event in analysis. To prove the validity of the aerosol attenuation measurements used in FD event analysis, the flatness of the ratio of reconstructed SD to FD energy as a function of the aerosol transmission to the depth of shower maximum has been verified.


2021 ◽  
Vol 124 ◽  
pp. 102508
Author(s):  
Andrés G. Delgado Giler ◽  
Luan B. Arbeletche ◽  
Ralph Bird ◽  
Rene A. Ong ◽  
Vitor de Souza

2015 ◽  
Vol 754-755 ◽  
pp. 859-864
Author(s):  
A.A. Al-Rubaiee ◽  
Uda Hashim ◽  
Mohd Khairuddin Md Arshad ◽  
A. Rahim Ruslinda ◽  
R.M. Ayub ◽  
...  

One of the characteristics of longitudinal development of extensive air showers is the number of charged particles and depth of shower maximum in extensive air showers as a function of primary energy, which is often used to reconstruct the elemental composition of primary cosmic rays. Studying of extensive air shower characteristics was performed by investigating the longitudinal development parameters depending on Heitler model for different primary particles. The simulation of the number of charged particles and depth of shower maximum (NandXmax) in extensive air showers of particle cascades was performed using AIRES code for SIBYLL hadronic model for different primary particles like electron, positron, gamma quanta and iron nuclei at the energy range 1014-1019eV. The comparison between the simulated longitudinal development ofNandXmaxusing SIBYLL hadronic model with two hadronic models (QGSJET99 ans SIBYLL16) has shown an opportunity for determination of cosmic ray cascade interactions in extensive air showers.


2021 ◽  
Vol 81 (2) ◽  
Author(s):  
W. D. Apel ◽  
◽  
J. C. Arteaga-Velázquez ◽  
L. Bähren ◽  
K. Bekk ◽  
...  

AbstractLOPES, the LOFAR prototype station, was an antenna array for cosmic-ray air showers operating from 2003 to 2013 within the KASCADE-Grande experiment. Meanwhile, the analysis is finished and the data of air-shower events measured by LOPES are available with open access in the KASCADE Cosmic Ray Data Center (KCDC). This article intends to provide a summary of the achievements, results, and lessons learned from LOPES. By digital, interferometric beamforming the detection of air showers became possible in the radio-loud environment of the Karlsruhe Institute of Technology (KIT). As a prototype experiment, LOPES tested several antenna types, array configurations and calibration techniques, and pioneered analysis methods for the reconstruction of the most important shower parameters, i.e., the arrival direction, the energy, and mass-dependent observables such as the position of the shower maximum. In addition to a review and update of previously published results, we also present new results based on end-to-end simulations including all known instrumental properties. For this, we applied the detector response to radio signals simulated with the CoREAS extension of CORSIKA, and analyzed them in the same way as measured data. Thus, we were able to study the detector performance more accurately than before, including some previously inaccessible features such as the impact of noise on the interferometric cross-correlation beam. These results led to several improvements, which are documented in this paper and can provide useful input for the design of future cosmic-ray experiments based on the digital radio-detection technique.


2015 ◽  
Vol 2015 (05) ◽  
pp. 018-018 ◽  
Author(s):  
A. Nelles ◽  
S. Buitink ◽  
A. Corstanje ◽  
J.E. Enriquez ◽  
H. Falcke ◽  
...  

2019 ◽  
Vol 216 ◽  
pp. 01007 ◽  
Author(s):  
Frank G. Schröder

A surface array of radio antennas will enhance the performance of the IceTop array and enable new, complementary science goals. First, the accuracy for cosmic-ray air showers will be increased since the radio array provides a calorimetric measurement of the electromagnetic component and is sensitive to the position of the shower maximum. This enhanced accuracy can be used to better measure the mass composition, to search for possible mass-dependent anisotropies in the arrival directions of cosmic rays, and for more thorough tests of hadronic interaction models. Second, the sensitivity of the radio array to inclined showers will increase the sky coverage for cosmic-ray measurements. Third, the radio array can be used to search for PeV photons from the Galactic Center. Since IceTop is planned to be enhanced by a scintillator array in the near future, a radio extension sharing the same infrastructure can be installed with minimal additional effort and excellent scientific prospects. The combination of ice-Cherenkov, scintillation, and radio detectors at IceCube will provide unprecedented accuracy for the study of highenergy Galactic cosmic rays.


2006 ◽  
Vol 21 (supp01) ◽  
pp. 60-64
Author(s):  
T. HUEGE ◽  
H. FALCKE

As a basis for the interpretation of data gathered by LOPES and other experiments, we have carried out Monte Carlo simulations of geosynchrotron radio emission from cosmic ray air showers. The simulations, having been verified carefully with analytical calculations, reveal a wealth of information on the characteristics of the radio signal and their dependence on specific air shower parameters. In this article, we review the spatial characteristics of the radio emission, its predicted frequency spectrum and its dependence on important air shower parameters such as the shower zenith angle, the primary particle energy and the depth of the shower maximum, which can in turn be related to the nature of the primary particle.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Harm Schoorlemmer ◽  
Washington R. Carvalho

AbstractWe developed a radio interferometric technique for the observation of extensive air showers initiated by cosmic particles. In this proof-of-principle study we show that properties of extensive air showers can be derived with high accuracy in a straightforward manner. When time synchronisation below $$\sim $$ ∼ 1 ns between different receivers can be achieved, direction reconstruction resolution of $$< 0.2^\circ $$ < 0 . 2 ∘ and resolution on the depth of shower maximum of $$<10$$ < 10  g/cm$$^2$$ 2 are obtained over the full parameter range studied, with even higher accuracy for inclined incoming directions. In addition, by applying the developed method to dense arrays of radio antennas, the energy threshold for the radio detection of extensive air showers can be significantly lowered. The proposed method can be incorporated in operational and future cosmic particle observatories and with its high accuracy it has the potential to play a crucial role in unravelling the composition of the ultra-high-energy cosmic-particle flux.


2020 ◽  
Vol 29 (05) ◽  
pp. 2050033
Author(s):  
A. A. Ivanov ◽  
S. V. Matarkin ◽  
L. V. Timofeev

The operation of a wide field-of-view (WFOV) Cherenkov telescope is described. The detection of extensive air showers (EASs) of cosmic rays (CRs) is based upon the coincidence with signals from the Yakutsk array. The data acquisition system of the telescope yields signals connected with EAS development parameters: presumably, shower age and position of shower maximum in the atmosphere. Here, we describe the method of signal processing used to reconstruct Cherenkov radiation signals induced by CR showers. An analysis of signal parameters results in the confirmation of the known correlation of the duration of the Cherenkov radiation signal with the distance to the shower core. The measured core distance dependence is used to set an upper limit to the dimensions of the area along the EAS axis where the Cherenkov radiation intensity is above half-peak amplitude.


Sign in / Sign up

Export Citation Format

Share Document