scholarly journals Quantum-inspired algorithms in practice

Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 307 ◽  
Author(s):  
Juan Miguel Arrazola ◽  
Alain Delgado ◽  
Bhaskar Roy Bardhan ◽  
Seth Lloyd

We study the practical performance of quantum-inspired algorithms for recommendation systems and linear systems of equations. These algorithms were shown to have an exponential asymptotic speedup compared to previously known classical methods for problems involving low-rank matrices, but with complexity bounds that exhibit a hefty polynomial overhead compared to quantum algorithms. This raised the question of whether these methods were actually useful in practice. We conduct a theoretical analysis aimed at identifying their computational bottlenecks, then implement and benchmark the algorithms on a variety of problems, including applications to portfolio optimization and movie recommendations. On the one hand, our analysis reveals that the performance of these algorithms is better than the theoretical complexity bounds would suggest. On the other hand, their performance as seen in our implementation degrades noticeably as the rank and condition number of the input matrix are increased. Overall, our results indicate that quantum-inspired algorithms can perform well in practice provided that stringent conditions are met: low rank, low condition number, and very large dimension of the input matrix. By contrast, practical datasets are often sparse and high-rank, precisely the type that can be handled by quantum algorithms.

2012 ◽  
Vol 12 (3) ◽  
pp. 241-272 ◽  
Author(s):  
Paola F. Antonietti ◽  
Blanca Ayuso de Dios ◽  
Susanne C. Brenner ◽  
Li-yeng Sung

Abstract We propose and analyze several two-level non-overlapping Schwarz methods for a preconditioned weakly over-penalized symmetric interior penalty (WOPSIP) discretization of a second order boundary value problem. We show that the preconditioners are scalable and that the condition number of the resulting preconditioned linear systems of equations is independent of the penalty parameter and is of order H/h, where H and h represent the mesh sizes of the coarse and fine partitions, respectively. Numerical experiments that illustrate the performance of the proposed two-level Schwarz methods are also presented.


Author(s):  
David B. Fogel ◽  
◽  
Peter J. Angeline ◽  

Experiments are conducted to assess the utility of processing building blocks within a framework of evolutionary computation. Systems of linear equations are used for testing the efficiency of different recombination operators, including one- and two-point and uniform crossover. The consistent results indicate that uniform crossover, which disrupts building blocks maximally, generates statistically significantly better solutions than one- or two-point crossover. Moreover, for the cases of small population sizes, crossing over existing solutions with completely random solutions (i.e., macromutation) can perform as well or better than the traditional oneand two-point operators. The results do not support the building block hypothesis.


2021 ◽  
Vol 23 (11) ◽  
pp. 113021
Author(s):  
Hsin-Yuan Huang ◽  
Kishor Bharti ◽  
Patrick Rebentrost

Abstract Solving linear systems of equations is essential for many problems in science and technology, including problems in machine learning. Existing quantum algorithms have demonstrated the potential for large speedups, but the required quantum resources are not immediately available on near-term quantum devices. In this work, we study near-term quantum algorithms for linear systems of equations, with a focus on the two-norm and Tikhonov regression settings. We investigate the use of variational algorithms and analyze their optimization landscapes. There exist types of linear systems for which variational algorithms designed to avoid barren plateaus, such as properly-initialized imaginary time evolution and adiabatic-inspired optimization, suffer from a different plateau problem. To circumvent this issue, we design near-term algorithms based on a core idea: the classical combination of variational quantum states (CQS). We exhibit several provable guarantees for these algorithms, supported by the representation of the linear system on a so-called ansatz tree. The CQS approach and the ansatz tree also admit the systematic application of heuristic approaches, including a gradient-based search. We have conducted numerical experiments solving linear systems as large as 2300 × 2300 by considering cases where we can simulate the quantum algorithm efficiently on a classical computer. Our methods may provide benefits for solving linear systems within the reach of near-term quantum devices.


2001 ◽  
Vol 32 (3) ◽  
pp. 133-141 ◽  
Author(s):  
Gerrit Antonides ◽  
Sophia R. Wunderink

Summary: Different shapes of individual subjective discount functions were compared using real measures of willingness to accept future monetary outcomes in an experiment. The two-parameter hyperbolic discount function described the data better than three alternative one-parameter discount functions. However, the hyperbolic discount functions did not explain the common difference effect better than the classical discount function. Discount functions were also estimated from survey data of Dutch households who reported their willingness to postpone positive and negative amounts. Future positive amounts were discounted more than future negative amounts and smaller amounts were discounted more than larger amounts. Furthermore, younger people discounted more than older people. Finally, discount functions were used in explaining consumers' willingness to pay for an energy-saving durable good. In this case, the two-parameter discount model could not be estimated and the one-parameter models did not differ significantly in explaining the data.


2008 ◽  
Vol 67 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Stefano Passini

The relation between authoritarianism and social dominance orientation was analyzed, with authoritarianism measured using a three-dimensional scale. The implicit multidimensional structure (authoritarian submission, conventionalism, authoritarian aggression) of Altemeyer’s (1981, 1988) conceptualization of authoritarianism is inconsistent with its one-dimensional methodological operationalization. The dimensionality of authoritarianism was investigated using confirmatory factor analysis in a sample of 713 university students. As hypothesized, the three-factor model fit the data significantly better than the one-factor model. Regression analyses revealed that only authoritarian aggression was related to social dominance orientation. That is, only intolerance of deviance was related to high social dominance, whereas submissiveness was not.


Author(s):  
J. E. Smyth

During the early 1940s, journalists observed that after years of men controlling women’s fashion, Hollywood had become “a fashion center in which women designers are getting to be a big power.” In a town where “the working girl is queen,” it was women who really knew how to dress working women. Edith Head’s name dominates Hollywood costume design. Though a relatively poor sketch artist who refused to sew in public, Head understood what the average woman wanted to wear and knew better than anyone how to craft her image as the-one-and-only Edith Head. However, she was one of many women who designed Hollywood glamour in the studio era. This chapter juxtaposes Head’s career with that of a younger, fiercely independent designer who would quickly upstage Head as a creative force. In many senses, Dorothy Jeakins’s postwar career ascent indicated the waning of the Hollywood system and the powerful relationship between female designers, stars, and fans.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Zhikuan Zhao ◽  
Jack K. Fitzsimons ◽  
Patrick Rebentrost ◽  
Vedran Dunjko ◽  
Joseph F. Fitzsimons

AbstractMachine learning has recently emerged as a fruitful area for finding potential quantum computational advantage. Many of the quantum-enhanced machine learning algorithms critically hinge upon the ability to efficiently produce states proportional to high-dimensional data points stored in a quantum accessible memory. Even given query access to exponentially many entries stored in a database, the construction of which is considered a one-off overhead, it has been argued that the cost of preparing such amplitude-encoded states may offset any exponential quantum advantage. Here we prove using smoothed analysis that if the data analysis algorithm is robust against small entry-wise input perturbation, state preparation can always be achieved with constant queries. This criterion is typically satisfied in realistic machine learning applications, where input data is subjective to moderate noise. Our results are equally applicable to the recent seminal progress in quantum-inspired algorithms, where specially constructed databases suffice for polylogarithmic classical algorithm in low-rank cases. The consequence of our finding is that for the purpose of practical machine learning, polylogarithmic processing time is possible under a general and flexible input model with quantum algorithms or quantum-inspired classical algorithms in the low-rank cases.


2021 ◽  
Vol 2 (1) ◽  
pp. 1-35
Author(s):  
Adrien Suau ◽  
Gabriel Staffelbach ◽  
Henri Calandra

In the last few years, several quantum algorithms that try to address the problem of partial differential equation solving have been devised: on the one hand, “direct” quantum algorithms that aim at encoding the solution of the PDE by executing one large quantum circuit; on the other hand, variational algorithms that approximate the solution of the PDE by executing several small quantum circuits and making profit of classical optimisers. In this work, we propose an experimental study of the costs (in terms of gate number and execution time on a idealised hardware created from realistic gate data) associated with one of the “direct” quantum algorithm: the wave equation solver devised in [32]. We show that our implementation of the quantum wave equation solver agrees with the theoretical big-O complexity of the algorithm. We also explain in great detail the implementation steps and discuss some possibilities of improvements. Finally, our implementation proves experimentally that some PDE can be solved on a quantum computer, even if the direct quantum algorithm chosen will require error-corrected quantum chips, which are not believed to be available in the short-term.


2000 ◽  
Vol 11 (3) ◽  
pp. 261-264 ◽  
Author(s):  
Tricia S. Clement ◽  
Thomas R. Zentall

We tested the hypothesis that pigeons could use a cognitively efficient coding strategy by training them on a conditional discrimination (delayed symbolic matching) in which one alternative was correct following the presentation of one sample (one-to-one), whereas the other alternative was correct following the presentation of any one of four other samples (many-to-one). When retention intervals of different durations were inserted between the offset of the sample and the onset of the choice stimuli, divergent retention functions were found. With increasing retention interval, matching accuracy on trials involving any of the many-to-one samples was increasingly better than matching accuracy on trials involving the one-to-one sample. Furthermore, following this test, pigeons treated a novel sample as if it had been one of the many-to-one samples. The data suggest that rather than learning each of the five sample-comparison associations independently, the pigeons developed a cognitively efficient single-code/default coding strategy.


Sign in / Sign up

Export Citation Format

Share Document