scholarly journals METHODOLOGY RESEARCH OF STABILITY OF SHALLOW ORTHOTROPIC SHELLS OF DOUBLE CURVATURE UNDER DYNAMIC LOADING

Author(s):  
Alexey A. Semenov

The paper deals with shallow orthotropic shells of double curvature, square in plan, under dynamic loading. Outlines the ratios of the mathematical model of deformation considering the geometric nonlinearity, transverse shear and orthotropy material. For the formation of the ODE system is used method of Kantorovich. The resulting system is solved by the method of Rosenbrock. It is shown the verification of the proposed method for isotropic shells. For several options orthotropic shells made of fiberglass and carbon fiber studied their stability and obtained values of critical loads.

Author(s):  
B Jerman

A fatigue analysis of a structure is nowadays a common part of the design process. One of the fundamental pieces of information for ensuring the high quality of the analysis is details of the dynamic loading of the structure. This information can be provided by means of a simulation using an appropriate mathematical model. In this article, a new mathematical model of a slewing crane is presented on the basis of the experiences gained with a previously developed model. Only the slewing motion that produces the spatial oscillation of the payload is considered, as this motion has received less attention than the translation of the suspension point. The mathematical model takes into account the non-linear nature of the swinging motion for large angles and the non-linearity of the power transmission to ensure sufficient accuracy. The structure's elasticity and damping, the friction in the main bearing, and the air resistance were also taken into account. The angles of swinging of the payload and the dynamic forces acting on the steel structure of the crane during payload transport were obtained. Measurements on an actual model of a crane were carried out for the purpose of confirmation of the mathematical model. The comparison of the results was executed and a good greement between the predicted and the measured values was observed.


2013 ◽  
Vol 846-847 ◽  
pp. 157-160
Author(s):  
Hua Qing Wang ◽  
Jian Cheng Yang ◽  
Kai Yang ◽  
Jian Feng Qin ◽  
Yu Bai ◽  
...  

Let-off system application of computer and electronic technology, may at any time adjust the loom is likely to change in the process of weaving yarn tension and density, thus improve the quality of the fabric. In this paper, based on the study of the function of the let-off motion, let-off servo control system is established the mathematical model of the warp beam unwinding; According to the carbon fiber Angle of multilayer union loom warp tension requirement, design a set of tension compensation device,and established the mathematical model of back rest. Easy and convenient, the whole control system has better reliability and real-time performance.


2020 ◽  
Vol 18 (4) ◽  
pp. 023-040
Author(s):  
Abhay Chaubey ◽  
Ajay Kumar ◽  
Małgorzata Grzegorczyk-Franczak ◽  
Małgorzata Szafraniec

The current work presents a hygrothermal analysis of laminated composite rhombic hyperbolic paraboloids. The cubic variation in displacement field together with cross curvature effects of the shell were used to solve the hygrothermal problem. Because of the parabolic variation of the transverse shear deformation, the shear correction factor was not necessary in this paper. In the mathematical model, the zero conditions of the transverse shear stress at the bottom and top of the shell were applied. The nine-noded curved isoparametric element with seven unknowns in each node was used to implement the present realistic mathematical model. The implementation of the finite element C0 (FE) of the present mathematical model was coded and performed in FORTRAN. The skew hyperbolic paraboloid on which the hygrothermal analysis was conducted had various temperatures, ply orientation, curvatures, moisture concentration, boundary conditions and thickness ratio. The paper shows that with the increase of the skew angle, the non-dimensional deflection decreases, and with the increase of moisture concentration, hygrothermal load and curvature ratio, the deflection increases. The results of the model presented in the paper were compared with other results published in the literature and were found to be consistent with them.


Author(s):  
Olexandr Pavlenko ◽  
Serhii Dun ◽  
Maksym Skliar

In any economy there is a need for the bulky goods transportation which cannot be divided into smaller parts. Such cargoes include building structures, elements of industrial equipment, tracked or wheeled construction and agricultural machinery, heavy armored military vehicles. In any case, tractor-semitrailer should provide fast delivery of goods with minimal fuel consumption. In order to guarantee the goods delivery, tractor-semitrailers must be able to overcome the existing roads broken grade and be capable to tow a semi-trailer in off-road conditions. These properties are especially important for military equipment transportation. The important factor that determines a tractor-semitrailer mobility is its gradeability. The purpose of this work is to improve a tractor-semitrailer mobility with tractor units manufactured at PJSC “AutoKrAZ” by increasing the tractor-semitrailer gradeability. The customer requirements for a new tractor are determined by the maximizing the grade to 18°. The analysis of the characteristics of modern tractor-semitrailers for heavy haulage has shown that the highest rate of this grade is 16.7°. The factors determining the limiting gradeability value were analyzed, based on the tractor-semitrailer with a KrAZ-6510TE tractor and a semi-trailer with a full weight of 80 t. It has been developed a mathematical model to investigate the tractor and semi-trailer axles vertical reactions distribution on the tractor-semitrailer friction performances. The mathematical model has allowed to calculate the gradeability value that the tractor-semitrailer can overcome in case of wheels and road surface friction value and the tractive force magnitude from the engine. The mathematical model adequacy was confirmed by comparing the calculations results with the data of factory tests. The analysis showed that on a dry road the KrAZ-6510TE tractor with a 80 t gross weight semitrailer is capable to climb a gradient of 14,35 ° with its coupling mass full use condition. The engine's maximum torque allows the tractor-semitrailer to overcome a gradient of 10.45° It has been determined the ways to improve the design of the KrAZ-6510TE tractor to increase its gradeability. Keywords: tractor, tractor-semitrailer vehicle mobility, tractor-semitrailer vehicle gradeability.


Author(s):  
Oleksii Timkov ◽  
Dmytro Yashchenko ◽  
Volodymyr Bosenko

The article deals with the development of a physical model of a car equipped with measuring, recording and remote control equipment for experimental study of car properties. A detailed description of the design of the physical model and of the electronic modules used is given, links to application libraries and the code of the first part of the program for remote control of the model are given. Atmega microcontroller on the Arduino Uno platform was used to manage the model and register the parameters. When moving the car on the memory card saved such parameters as speed, voltage on the motor, current on the motor, the angle of the steered wheel, acceleration along three coordinate axes are recorded. Use of more powerful microcontrollers will allow to expand the list of the registered parameters of movement of the car. It is possible to measure the forces acting on the elements of the car and other parameters. In the future, it is planned to develop a mathematical model of motion of the car and check its adequacy in conducting experimental studies on maneuverability on the physical model. In addition, it is possible to conduct studies of stability and consumption of electrical energy. The physical model allows to quickly change geometric dimensions and mass parameters. In the study of highway trains, this approach will allow to investigate the various layout schemes of highway trains in the short term. It is possible to make two-axle road trains and saddle towed trains, three-way hitched trains of different layout. The results obtained will allow us to improve not only the mathematical model, but also the experimental physical model, and move on to further study the properties of hybrid road trains with an active trailer link. This approach allows to reduce material and time costs when researching the properties of cars and road trains. Keywords: car, physical model, experiment, road trains, sensor, remote control, maneuverability, stability.


Author(s):  
Serhii Kovbasenko ◽  
Andriy Holyk ◽  
Serhii Hutarevych

The features of an advanced mathematical model of motion of a truck with a diesel engine operating on the diesel and diesel gas cycles are presented in the article. As a result of calculations using the mathematical model, a decrease in total mass emissions as a result of carbon monoxide emissions is observed due to a decrease in emissions of nitrogen oxides and emissions of soot in the diesel gas cycle compared to the diesel cycle. The mathematical model of a motion of a truck on a city driving cycle according to GOST 20306-90 allows to study the fuel-economic, environmental and energy indicators of a diesel and diesel gas vehicle. The results of the calculations on the mathematical model will make it possible to conclude on the feasibility of converting diesel vehicles to using compressed natural gas. Object of the study – the fuel-economic, environmental and energy performance diesel engine that runs on dual fuel system using CNG. Purpose of the study – study of changes in fuel, economic, environmental and energy performance of vehicles with diesel engines operating on diesel and diesel gas cycles, according to urban driving cycle modes. Method of the study – calculations on a mathematical model and comparison of results with road tests. Bench and road tests, results of calculations on the mathematical model of motion of a truck with diesel, working on diesel and diesel gas cycles, show the improvement of environmental performance of diesel vehicles during the converting to compressed natural gas in operation. Improvement of environmental performance is obtained mainly through the reduction of soot emissions and nitrogen oxides emissions from diesel gas cycle operations compared to diesel cycle operations. The results of the article can be used to further develop dual fuel system using CNG. Keywords: diesel engine, diesel gas engine, CNG


1998 ◽  
Vol 2 ◽  
pp. 23-30
Author(s):  
Igor Basov ◽  
Donatas Švitra

Here a system of two non-linear difference-differential equations, which is mathematical model of self-regulation of the sugar level in blood, is investigated. The analysis carried out by qualitative and numerical methods allows us to conclude that the mathematical model explains the functioning of the physiological system "insulin-blood sugar" in both normal and pathological cases, i.e. diabetes mellitus and hyperinsulinism.


2001 ◽  
Vol 6 (1) ◽  
pp. 9-19 ◽  
Author(s):  
A. Buikis ◽  
J. Cepitis ◽  
H. Kalis ◽  
A. Reinfelds ◽  
A. Ancitis ◽  
...  

The mathematical model of wood drying based on detailed transport phenomena considering both heat and moisture transfer have been offered in article. The adjustment of this model to the drying process of papermaking is carried out for the range of moisture content corresponding to the period of drying in which vapour movement and bound water diffusion in the web are possible. By averaging as the desired models are obtained sequence of the initial value problems for systems of two nonlinear first order ordinary differential equations. 


2011 ◽  
Vol 2 (1) ◽  
pp. 1-12
Author(s):  
A. Hegyi ◽  
H. Vermeşan ◽  
V. Rus

Abstract In this paper we wish to present the numerical model elaborated in order to simulate some physical phenomena that influence the general deterioration of steel, whether hot dip galvanized or not, in reinforced concrete. We describe the physical and mathematical models, establishing the corresponding equation system, the initial and boundary conditions. We have also presented the numeric model associated to the mathematical model and the numeric methods of discretization and solution of the differential equations system that describes the mathematical model.


Sign in / Sign up

Export Citation Format

Share Document