scholarly journals LEARNING MATHEMATICAL MODELLING WITH AUGMENTED REALITY MOBILE MATH TRAILS PROGRAM: HOW CAN IT WORK?

2020 ◽  
Vol 11 (2) ◽  
pp. 181-192
Author(s):  
Adi Nur Cahyono ◽  
Yohanes Leonardus Sukestiyarno ◽  
Mohammad Asikin ◽  
Miftahudin Miftahudin ◽  
Muhammadi Ghozian Kafi Ahsan ◽  
...  

The aim of this study is to investigate how an augmented reality mobile math trails program can provide opportunities for students to engage in meaningful mathematical modelling activities. An explorative research design was conducted involving two mathematics teachers and 30 eight grades in Semarang, Indonesia. An Augmented Reality Mobile Math Trails App was created, and several math trail tasks were designed, then students run the activity. Data were gathered by means of participatory observation, interviews, questionnaires, tests, and worksheets. Data analysis began with the organisation, annotation, description of the data and statistic tests. The findings indicate that an educational program was successfully designed, which offered students a meaningful mathematical experience. A mobile app was also developed to support this program. The mobile app with augmented reality features is helpful for students as a tool that bridges the gap between real-world situations and mathematical concepts in problem-solving following the mathematical modelling cycle. The program thus contributes to a higher ability in mathematical modelling. The study identified a link between instrumented techniques in programs and mathematical modelling, as built during the instrumentation process. Further studies are essential for project development and implementation in other cities with different situations and aspects of study.

Pythagoras ◽  
2021 ◽  
Vol 42 (1) ◽  
Author(s):  
Rina Durandt

This article sets out design principles to consider when student mathematics teachers are expected to learn mathematical modelling during their formal education. Blum and Leiß’s modelling cycle provided the theoretical framework to explain the modelling process. Learning to teach mathematical modelling, and learning to solve modelling tasks, while simultaneously fostering positive attitudes, is not easy to achieve. The inclusion of real-life examples and applications is regarded as an essential component in mathematics curricula worldwide, but it largely depends on mathematics teachers who are well prepared to teach modelling. The cyclic process of design-based research was implemented to identify key elements that ought to be considered when mathematical modelling is incorporated in formal education. Fifty-five third-year student teachers from a public university in South Africa participated in the study. Three phases were implemented, focusing firstly on relevance (guided by a needs analysis), secondly on consistency and practicality via the design and implementation of two iterations, and lastly on effectiveness by means of reflective analysis and evaluation. Mixed data were collected via a selection of qualitative instruments, and the Attitudes Towards Mathematical Modelling Inventory. Through content analyses students’ progress was monitored. Results analysed through SPSS showed significant positive changes in their enjoyment and motivation towards mathematical modelling. Student teachers require sufficient resources and opportunities through their formal education to participate regularly in mathematical modelling activities, to develop competence in solving modelling tasks, and to augment positive attitudes. This study adds value to the global discussion related to teachers’ professional development regarding mathematical modelling.


10.28945/2207 ◽  
2015 ◽  
Vol 10 ◽  
pp. 021-035 ◽  
Author(s):  
Yan Lu ◽  
Joseph T. Chao ◽  
Kevin R. Parker

This project shows a creative approach to the familiar scavenger hunt game. It involved the implementation of an iPhone application, HUNT, with Augmented Reality (AR) capability for the users to play the game as well as an administrative website that game organizers can use to create and make available games for users to play. Using the HUNT mobile app, users will first make a selection from a list of games, and they will then be shown a list of objects that they must seek. Once the user finds a correct object and scans it with the built-in camera on the smartphone, the application will attempt to verify if it is the correct object and then display associated multi-media AR content that may include images and videos overlaid on top of real world views. HUNT not only provides entertaining activities within an environment that players can explore, but the AR contents can serve as an educational tool. The project is designed to increase user involvement by using a familiar and enjoyable game as a basis and adding an educational dimension by incorporating AR technology and engaging and interactive multimedia to provide users with facts about the objects that they have located


Author(s):  
Johny Pretell Cruzado ◽  
Tatiana Llajaruna Cespedes ◽  
Gian Pierre Bohorquez Coria ◽  
Jose Luis Herrera Salazar
Keyword(s):  

Author(s):  
Nina Ferreri ◽  
Christopher B. Mayhorn

As digital technology develops, users create expectations for performance that may be violated when malfunctions occur. This project examined how priming expectations of technology performance (high v. low v. no) and experiences of technology malfunction (present v. not present) can influence feelings of frustration and performance on a task. A preliminary sample of 42 undergraduate participants completed a QR code scavenger hunt using the augmented reality mobile app, ARIS. Following the task, participants reported what they found for each scavenger hunt clue, their responses to failures in digital technology, and technology acceptance attitudes. Several factorial ANOVAs revealed a main effect for expectation on adaptive items of the RFDT scale and a main effect for malfunction on performance level. This suggests a potential contradiction between attitudes and behaviors when considering a common scenario involving technology.


Author(s):  
Andrea F. Abate ◽  
Silvio Barra ◽  
Giuseppe Galeotafiore ◽  
Carmen Díaz ◽  
Elvira Aura ◽  
...  
Keyword(s):  

2020 ◽  
Vol 10 (2) ◽  
pp. 105-114
Author(s):  
Sakon Tangkawsakul ◽  
Nuttapat Mookda ◽  
Weerawat Thaikam

In this study, we adapted the school sports day to provide opportunities to relate real-life situations with mathematical knowledge and skills. The purpose of this study was to describe the way that the teachers interact with their students and the students’ responses during mathematical modelling processes. The designing of the modelling task was inspired by the Realistic Fermi Problems about the bleacher in the school sports day. The modelling task was designed by a collaboration of mathematics teachers and educators and experimented with 10th-grade students. Each experiment lasted for 45 minutes and was conducted in the one-day camp with 45 students. The results showed that the students who had no previous experience of mathematical modelling engaged in mathematical modelling processes with their friends under the guidance and supporting of the teacher. Most of them were able to think, make assumptions, collect data, observe, make conjectures and create mathematical models to understand and solve the modelling task.   


2020 ◽  
Vol 9 (3) ◽  
pp. 243
Author(s):  
MEHMET FATIH ÖÇAL ◽  
TUĞRUL KAR ◽  
GÜRSEL GÜLER ◽  
ALI SABRI İPEK

This study aims to investigate the similarities and differences between prospective mathematics teachers’ creative thinking skills in paper-pencil test and on a Geogebra-supported environment in terms of problem-posing. This case study used purposive sampling method for determining the participants. Findings revealed that the activities carried out in the GeoGebra-supported environment were insufficient to produce creative problems, and GeoGebra’s main utility to prospective teachers was in identifying their mistakes related to mathematical concepts and discrepancies among numerical values of the problems posed. The reasons for the low achievement in posing problem were discussed: These were; (i) lack of problem-posing experience, (ii) the structure of problem-posing activity, and (iii) prospective teachers’ mathematical content knowledge.


2019 ◽  
Vol 16 (3) ◽  
pp. 419-437
Author(s):  
Zorica Dodevska ◽  
Vladimir Kvrgic ◽  
Marko Mihic ◽  
Boris Delibasic

The use of robotic models with the main functionalities of real objects together with the implementation of innovative technologies, augmented reality (AR) in this case, is the focus of the paper. Therefore, the concept of a simplified robotic model (SRM) is presented. This concept is important because it is useful for achieving the goals of engineering projects, which is especially justified prior to the construction of the real objects. It improves presentation, development, and education capabilities that are unavoidable segments of the project strategy. Additionally, it is possible to transfer developed solutions to the final objects after certain modifications. Multidisciplinary building of the unique SRM of the 3-axis centrifuge for pilot training is described, where multi-attribute decisionmaking is used to conduct some experiments. The application includes the use of a physical model, built from LEGO elements, software for controlling and monitoring the physical model, and an AR mobile app.


The present work presents a research carried out with 6th and 7th grade students of Elementary School II at Escola Municipal Mon. Walfredo Gurgel Alto do Rodrigues/RN, aiming to encourage the use of materials such as Ruler and Square in Mathematics classes and to know your opinion about the use of Augmented Reality and Virtual Reality glasses. This aimed at a reflective analysis of how the inclusion of technologies in education can enhance learning when the use of multimedia resources that help in understanding mathematical concepts or that enable a dynamic visualization of the object of study are encouraged. She seeks to know what the contribution of this device to the teaching and learning process of Mathematics. Methodologically, the work is characterized as an exploratory research of qualitative and quantitative nature, with a bias towards a case study, with data collected through a semi-structured questionnaire with 102 students. We can count on an interdisciplinary planning to present the programmed contents with more meaning. The results were analyzed based on the research instruments and the testimonies of the students, in addition to a brief study on information and communication technologies applied to learning. Thus, the data are organized in graphs where the research findings are expressed.


2021 ◽  
Author(s):  
Eunyoung (Christine) Sung ◽  
Dai‐In Danny Han ◽  
Yung Kyun Choi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document