Corrosion resistant protective coating of the Zr–Nb–Sn system obtained by high speed cold gas dynamic spraying

Author(s):  
T. I. Bobkova ◽  
R. Yu. Bystrov ◽  
A. F. Vasilev ◽  
E. A. Samodelkin ◽  
B. V. Farmakovsky

The article presents the results of experimental studies on the creation of an optimal alloy composition of the Zr–Nb–Sn system for obtaining corrosion-resistant coatings using the technology of supersonic cold gas-dynamic spraying. Practical recommendations are given on the use of the developed coating in precision engineering products.

2019 ◽  
pp. 110-114
Author(s):  
D. A. Gerashchenkov ◽  
T. I. Bobkova ◽  
A. F. Vasiliev ◽  
P. A. Kuznetsov ◽  
E. A. Samodelkin ◽  
...  

A composition of a precision alloy based on the Ni–Cr–Mo system for wear and corrosion-resistant coatings by supersonic cold gas dynamic spraying has been developed. The optimum coatings composition provides high level of operational properties; its application is very promising for protection of structural and functional elements of marine equipment from aggressive environmental influence.


Author(s):  
A. M. Makarov ◽  
V. R. Nikitina ◽  
D. A. Gerashchenkov ◽  
A. F. Vasiliev

This study developed practical recommendations for using the method of cold gas dynamic spraying to obtain functional coatings in a production environment using powders of nickel, titanium and aluminum of the grades: PNE-1 (Ni), PTOM-1 (Ti) and PA-VCh (Al). The temperature and speed parameters of the process were optimized using mechanical mixtures (Ni + Ti) and (Ni + Al) as an example. High adhesion of the coating and coefficient of powder use were ensured with maximum productivity at the DIMET-403 installation.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1288-1293 ◽  
Author(s):  
LEDING GUAN ◽  
BIAO YAN ◽  
LING LONG ◽  
SHA YANG

Cold gas dynamic spraying (CGDS) technique makes use of high-speed gas current to spray diversified metal, alloy and composite materials under room temperature or with a little heated. It is one kind of novel surface engineering technologies, aimed at eliminating such negative influences as oxidation, gasification, melt, crystallization and gas decomposition and so on existing in hot spraying technologies. Due to its peculiar characteristics such as low spraying temperature, non-oxidation, low stress among coating layers, compactification, and high utilization rate of raw materials, as well as effective applications in the domain of fabricating coatings, the CGDS technique has attracted great attention. As it has the advantages aforementioned, especially avoiding the changes of material properties resulted from high spraying temperature, CGDS provides a kind of revolutionary means for fabricating such heat-sensitive materials as amorphous alloys. The paper reviews the current situation and application development of the CGDS technique, and presents our preliminary exploration of fabricating bulk Fe -based amorphous alloy via CGDS together with mechanical milling process.


Author(s):  
K. Sakaki ◽  
Y. Shimizu

Abstract Nozzle geometry has a profound effect on HVOF spraying, influencing combustion gas dynamics as well as particle behavior. Nozzle dimensions are also important in cold gas-dynamic spraying (CGDS), particularly the length of the nozzle which affects gas flow temperature and speed. In this study, numerical simulations and experiments were conducted to determine how the length of the entrance convergent section of gun nozzles affects HVOF spraying. Process changes that occur inside the nozzle (as predicted by simulation) were correlated with coating properties. An Al2O3-TiO2 powder was used for the experimental studies. Changes in nozzle length had a significant impact on deposition efficiency, microstructure, hardness, and particle velocity. These relationships (as measured and calculated) were then applied to the nozzle design for the CGDS method.


2012 ◽  
Vol 53 (6) ◽  
pp. 948-953 ◽  
Author(s):  
A. P. Alkhimov ◽  
V. F. Kosarev ◽  
S. V. Klinkov ◽  
A. A. Sova

2008 ◽  
Vol 203 (3-4) ◽  
pp. 364-371 ◽  
Author(s):  
P. Richer ◽  
A. Zúñiga ◽  
M. Yandouzi ◽  
B. Jodoin

2011 ◽  
Vol 704-705 ◽  
pp. 1112-1116
Author(s):  
Yu Liang Liu ◽  
Tian Ying Xiong ◽  
Jie Wu

Cold Gas Dynamic Spraying (CGDS) has been developed to fabricate surface coating as a new technique in recent years. In this paper, aluminum bronze particles were sprayed on 45 steel and 316L stainless steel by CGDS, and the coating was sucessfully fabricated on the surface of the steels. The microstructure of the coating and the interface between the coating and the substrate were investigated by scanning electron microscope (SEM), energy dispersive (EDX) and XRD. It was found that the coating was dense and its porosity was low, while the microhardness of the coating was lower than that of the bulk one; Mechanical bonding was the main formation mechanism of the coating, and there was metallurgical bonding too; Diffusion occured at the interface between the coating and substrate; α phase in aluminum bronze particles transformed to β phase after the spray and the transformation was induced by the plastic strain during spraying.


Sign in / Sign up

Export Citation Format

Share Document