scholarly journals ONE-PARTICLE WAVE FUNCTIONS IN THE RELATIONAL PARADIGM

Metaphysics ◽  
2020 ◽  
pp. 28-33
Author(s):  
A. V Solov'yov

We discuss a quantum description of free particles in pseudo-Finslerian momentum spaces appearing in one of relational approaches to physics and geometry of space-time. It is shown that, for wave functions of such particles, we can define an invariant unitary scalar product which ensures the standard quantum mechanical probabilistic interpretation. As the simplest example, the description of a spinless particle is considered.

2003 ◽  
Vol 313 (5-6) ◽  
pp. 498-501 ◽  
Author(s):  
I.L. Egusquiza ◽  
J.G. Muga ◽  
B. Navarro ◽  
A. Ruschhaupt

2018 ◽  
Vol 3 (1) ◽  
pp. 03-09 ◽  
Author(s):  
Hitler Louis ◽  
Ita B. Iserom ◽  
Ozioma U. Akakuru ◽  
Nelson A. Nzeata-Ibe ◽  
Alexander I. Ikeuba ◽  
...  

An exact analytical and approximate solution of the relativistic and non-relativistic wave equations for central potentials has attracted enormous interest in recent years. By using the basic Nikiforov-Uvarov quantum mechanical concepts and formalism, the energy eigenvalue equations and the corresponding wave functions of the Klein–Gordon and Schrodinger equations with the interaction of Modified Hylleraas-Hulthen Potentials (MHHP) were obtained using the conventional Pekeris-type approximation scheme to the orbital centrifugal term. The corresponding unnormalized eigen functions are evaluated in terms of Jacobi polynomials.


1968 ◽  
Vol 46 (7) ◽  
pp. 879-888 ◽  
Author(s):  
M. S. Miller ◽  
J. D. Poll

A quantum-mechanical calculation of the pair correlation function for hard spheres in the low-density limit has been made. This calculation is, therefore, valid at low temperatures, where quantum-mechanical diffraction and symmetry effects are important. Results are given for various temperatures and hard-sphere diameters. The pair correlation function is presented in the form g = gB + gS, where gB is the correlation function for Boltzmann particles and gS describes the symmetry effects. It is found that gS(R) for any value of the separation R is always smaller than the corresponding value for free particles.


2020 ◽  
Vol 33 (2) ◽  
pp. 216-218
Author(s):  
Johan Hansson

By analyzing the same Bell experiment in different reference frames, we show that nature at its fundamental level is superdeterministic, not random, in contrast to what is indicated by orthodox quantum mechanics. Events—including the results of quantum mechanical measurements—in global space-time are fixed prior to measurement.


2019 ◽  
Vol 35 (07) ◽  
pp. 2050031 ◽  
Author(s):  
Faizuddin Ahmed ◽  
Hassan Hassanabadi

In this paper, we investigate the Duffin–Kemmer–Petiau (DKP) equation for spin-0 system of charge-free particles in the background of a flat class of Gödel-type spacetimes, and evaluate the individual energy levels and corresponding wave functions in detail.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Steven B. Giddings ◽  
Gustavo J. Turiaci

Abstract We investigate contributions of spacetime wormholes, describing baby universe emission and absorption, to calculations of entropies and correlation functions, for example those based on the replica method. We find that the rules of the “wormhole calculus”, developed in the 1980s, together with standard quantum mechanical prescriptions for computing entropies and correlators, imply definite rules for limited patterns of connection between replica factors in simple calculations. These results stand in contrast with assumptions that all topologies connecting replicas should be summed over, and call into question the explanation for the latter. In a “free” approximation baby universes introduce probability distributions for coupling constants, and we review and extend arguments that successive experiments in a “parent” universe increasingly precisely fix such couplings, resulting in ultimately pure evolution. Once this has happened, the nontrivial question remains of how topology-changing effects can modify the standard description of black hole information loss.


Author(s):  
Adrian Kent

We propose definitions and implementations of ‘S-money’—virtual tokens designed for high-value fast transactions on networks with relativistic or other trusted signalling constraints, defined by inputs that in general are made at many network points, some or all of which may be space-like separated. We argue that one significant way of characterizing types of money in space–time is via the ‘summoning’ tasks they can solve: that is, how flexibly the money can be propagated to a desired space–time point in response to relevant information received at various space–time points. We show that S-money is more flexible than standard quantum or classical money in the sense that it can solve deterministic summoning tasks that they cannot. It requires the issuer and user to have networks of agents with classical data storage and communication, but no long-term quantum state storage, and is feasible with current technology. User privacy can be incorporated by secure bit commitment and zero-knowledge proof protocols. The level of privacy feasible in given scenarios depends on efficiency and composable security questions that remain to be systematically addressed.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 874
Author(s):  
Francesco Iafrate ◽  
Enzo Orsingher

In this paper we study the time-fractional wave equation of order 1 < ν < 2 and give a probabilistic interpretation of its solution. In the case 0 < ν < 1 , d = 1 , the solution can be interpreted as a time-changed Brownian motion, while for 1 < ν < 2 it coincides with the density of a symmetric stable process of order 2 / ν . We give here an interpretation of the fractional wave equation for d > 1 in terms of laws of stable d−dimensional processes. We give a hint at the case of a fractional wave equation for ν > 2 and also at space-time fractional wave equations.


2018 ◽  
Vol 33 (34) ◽  
pp. 1845019 ◽  
Author(s):  
Vitaly Vanchurin

Informational dependence between statistical or quantum subsystems can be described with Fisher information matrix or Fubini-Study metric obtained from variations/shifts of the sample/configuration space coordinates. Using these (noncovariant) objects as macroscopic constraints, we consider statistical ensembles over the space of classical probability distributions (i.e. in statistical space) or quantum wave functions (i.e. in Hilbert space). The ensembles are covariantized using dual field theories with either complex scalar field (identified with complex wave functions) or real scalar field (identified with square roots of probabilities). We construct space–time ensembles for which an approximate Schrodinger dynamics is satisfied by the dual field (which we call infoton due to its informational origin) and argue that a full space–time covariance on the field theory side is dual to local computations on the information theory side. We define a fully covariant information-computation tensor and show that it must satisfy certain conservation equations. Then we switch to a thermodynamic description of the quantum/statistical systems and argue that the (inverse of) space–time metric tensor is a conjugate thermodynamic variable to the ensemble-averaged information-computation tensor. In (local) equilibrium, the entropy production vanishes, and the metric is not dynamical, but away from the equilibrium the entropy production gives rise to an emergent dynamics of the metric. This dynamics can be described approximately by expanding the entropy production into products of generalized forces (derivatives of metric) and conjugate fluxes. Near equilibrium, these fluxes are given by an Onsager tensor contracted with generalized forces and on the grounds of time-reversal symmetry, the Onsager tensor is expected to be symmetric. We show that a particularly simple and highly symmetric form of the Onsager tensor gives rise to the Einstein–Hilbert term. This proves that general relativity is equivalent to a theory of nonequilibrium (thermo)dynamics of the metric, but the theory is expected to break down far away from equilibrium where the symmetries of the Onsager tensor are to be broken.


In a recent paper Schott has criticized the quantum mechanical method of finding the intensities of spectral lines, and in particular the assumption that the intensity may be derived by treating the atom as a dipole, radiating classically. The electric moment of this dipole is taken as p = e -2 πivt ∫ Ψ* f rΨ i d τ + Conjugate complex, (1A) where Ψ i and Ψ f are the wave functions of the initial and final states of the atom respectively, and in the Quantum Theory the usual assumption is that the energy radiated per unit time is given by R = 2 |p¨ ¯ | 2 /3 c 2 , (1B) where p¨ ¯ is the time average of p¨. A more consistent method is suggested in which the electric density ρ and the current j, corresponding to the transition, are found, and the electromagnetic field due to these two is examined.


Sign in / Sign up

Export Citation Format

Share Document