scholarly journals The radiation balance of oak forest ecosystems of the Crimean Peninsula

2020 ◽  
Vol 28 (3) ◽  
pp. 201-212
Author(s):  
Roman V. Gorbunov ◽  
Tatyana Yu. Gorbunova ◽  
Vladimir A. Tabunshchik ◽  
Anna V. Drygval

Studying the response of forest ecosystems to climate change is one of the urgent tasks of modern ecology. Regional manifestations of global climate change lead to special reactions of forest ecosystems. The main source of energy for all processes in ecosystems is solar radiation. It starts all the processes of transformation of matter, energy and information in the ecosystem. A change in its income leads to a restructuring of the ecosystem functioning system. For the Crimean Peninsula today the response of forest ecosystems to climate change remains poorly studied. This determines the relevance and purpose of this work. On the base of the landscape-typological map of the Crimean Peninsula, open reanalysis databases, and GIS modeling, the elements of the radiation balance of the oak forest ecosystems of the Crimean peninsula are estimated under the conditions of modern climate changes. The basic laws of the radiation balance formation of oak forest ecosystems and the features of its interannual dynamics are shown.

Author(s):  
Maria Polozhikhina ◽  

Climate conditions remain one of the main risk factors for domestic agriculture, and the consequences of global climate change are ambiguous in terms of prospects for agricultural production in Russia. This paper analyzes the impact of climate change on the country’s food security from the point of view of its self-sufficiency in grain primarily. Specific conditions prevailing on the Crimean peninsula are also considered.


2011 ◽  
Vol 12 (2) ◽  
pp. 150-160 ◽  
Author(s):  
Frédérique Reverchon ◽  
Zhihong Xu ◽  
Timothy J. Blumfield ◽  
Chengrong Chen ◽  
Kadum M. Abdullah

2015 ◽  
Vol 6 (2) ◽  
pp. 1
Author(s):  
Musiliyu Oladipupo Mustafa ◽  
Olubusola Temitope Adeoye ◽  
Folorunso Ishaq Abdulalzeez ◽  
Olukayode Dare Akinyemi

<p>Deforestation occurs around the world; though tropical rainforests are particularly targeted, it is considered to be one of the contributing factors to global climate change. While Nigeria is probably best known today for its oil deposits, according to the World Resources Institute, Nigeria is home to 4,715 different types of plant species, and over 550 species of breeding birds and mammals, making it one of the most ecologically vibrant places of the planet. It is also one of the most populous country with appalling deforestation record. This situation is hence making our ecosystems, biodiversity, agriculture and other natural endowments highly unsecured. The Forest provides excellent resources for bees and beekeeping, and bees are a vital part of forest ecosystems. Bees are essential for sustaining our environment because they</p><p>Pollinate flowering plants and conserves biological biodiversity along with their products (honey, propolis, bee wax, royal jelly and bee venom) which are beneficial to man. Conservation of the forest is therefore imperative for sustainable beekeeping. The study reviews the different causes of climate change and how they affect different natural forest activities which are weather-dependent. Also how climate change and other causes (both natural and man-made) lead to deforestation, which in turn distort sustainable honey production in Nigeria. Different sustainable measures hoped to alleviate the effects of climate change and deforestation where also discussed. </p>


Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 453
Author(s):  
Yanjiao Liu ◽  
Xiangzhen Li ◽  
Yongping Kou

Ectomycorrhizal fungi (EcMF) are involved in soil nutrient cycling in forest ecosystems. These fungi can promote the uptake of nutrients (e.g., nitrogen (N) and phosphorus (P)) and water by host plants, as well as facilitate host plant growth and resistance to stresses and diseases, thereby maintaining the aboveground primary productivity of forest ecosystems. Moreover, EcMF can acquire the carbon (C) sources needed for their growth from the host plants. The nutrient regulation mechanisms of EcMF mainly include the decay of soil organic matter via enzymatic degradation, nonenzymatic mechanism (Fenton chemistry), and priming effects, which in turn promote C and N cycling. At the same time, EcMF can secrete organic acids and phosphatases to improve the availability of soil P, or increase mycelium inputs to facilitate plant acquisition of P. The spatiotemporal distribution of EcMF is influenced by a combination of historical factors and contemporary environmental factors. The community of EcMF is associated with various factors, such as climate change, soil conditions, and host distribution. Under global climate change, investigating the relationships between the nutrient cycling functions of EcMF communities and their distribution patterns under various spatiotemporal scales is conducive to more accurate assessments of the ecological effects of EcMF on the sustainable development of forest.


2015 ◽  
Vol 6 (2) ◽  
pp. 106-109 ◽  
Author(s):  
Svetlana Dorzhievna Puntsukova ◽  
Bair Octyabrevich Gomboev ◽  
Margarita Ramilievna Akhmetzyanova ◽  
Tsogtbatar Jamsran ◽  
Tsendesuren Dagdan ◽  
...  

2013 ◽  
Vol 13 (10) ◽  
pp. 26001-26041 ◽  
Author(s):  
J. Yoon ◽  
J. P. Burrows ◽  
M. Vountas ◽  
W. von Hoyningen-Huene ◽  
D. Y. Chang ◽  
...  

Abstract. Atmospheric aerosol, generated from natural and anthropogenic sources, plays a key role in regulating visibility, air quality, and acid deposition. It is directly linked to and impacts on human health. It also reflects and absorbs incoming solar radiation and thereby influences the climate change. The cooling by aerosols is now recognized to have partly masked the atmospheric warming from fossil fuel combustion emissions. The role and potential management of short-lived climate pollutants such as aerosol are currently a topic of much scientific and public debate. Our limited knowledge of atmospheric aerosol and its influence on the Earth's radiation balance has a significant impact on the accuracy and error of current predictions of the future global climate change. In the past decades, environmental legislation in industrialized countries has begun to limit the release of anthropogenic pollutants. In contrast, in Asia as a result of the recent rapid economic development, emissions from industry and traffic have increased dramatically. In this study, the temporal changes/trends of atmospheric aerosols, derived from the satellite instruments MODIS (on board Terra and Aqua), MISR (Terra), and SeaWiFS (OrbView-2) during the past decade, are investigated. Whilst the aerosol optical thickness, AOT, over Western Europe decreases (i.e. by up to about −40% from 2003 to 2008) and parts of North America, a statistically significant increase (about +34% in the same period) over East China is observed and attributed to both the increase in industrial output and the Asian desert dust.


2021 ◽  
Author(s):  
Jiewei Hao ◽  
L.M. Chu

Abstract Tropical regions are biodiversity hotspots and are well suited to explore the potential influence of global climate change on forest ecosystems. Bryophytes have essential ecological functions in tropical forest ecosystems. Knowledge of the potential impact of global warming and possible changes in water availability patterns on terrestrial bryophytes is limited. We transplanted eight moss species from two elevations (900 and 500 m) to warmer and drier elevations (500 and 100 m) during a half-year observation period on Tai Mo Shan, southern China. The simulated climate change resulted in a marked decrease in growth and a negative effect on the health of the transplanted species. Few moss species survived six months after transplanting to the warmer and drier lowlands, and their health status deteriorated severely. Three moss species, Sematophyllum subhumile, Pseudotaxiphyllum pohliaecarpum, and Brachythecium buchananii, were highly susceptible to changes in temperature and moisture and might be used as suitable bioindicators. As the tropics are expected to become hotter and drier, terrestrial mosses might be negatively affected or even be at risk of extinction. The cascading negative effects on the forest ecosystem might be induced by the dying back or even disappearance of terrestrial moss species. Thus, conservation of bryophyte communities is important to sustain and improve the stability and resilience of tropical forest ecosystems to climate change.


Sign in / Sign up

Export Citation Format

Share Document