Synthesis, characterization and in vitro drug release of curcumin loaded cassava starch acetate–poly vinyl alcohol/ closite 30b nanocomposites

Author(s):  
DEVI PRASAN MOHANTY ◽  
S.K BISW AL
e-Polymers ◽  
2005 ◽  
Vol 5 (1) ◽  
Author(s):  
Chunxue Zhang ◽  
Xiaoyan Yuan ◽  
Lili Wu ◽  
Jing Sheng

AbstractSubmicron poly(vinyl alcohol) (PVA) fibre mats embedded with Aspirin and bovine serum albumin (BSA) were prepared by electrospinning of their aqueous solutions. Fibre morphology was investigated by scanning electron microscopy. The composition of the fibre mats was characterized by Fourier transform IR spectroscopy and X-ray photoelectron spectroscopy. The in vitro drug release was investigated by immersing the fibre mats in phosphate buffer solution at 37°C. Results indicated that the morphology of fibre mats was influenced by the amount of drug, and more beaded and irregularly shaped fibres were found with increasing drug amounts. There were drug molecules distributed on the surface of the PVA fibres. Studies of in vitro drug release showed that both Aspirin and BSA were released more quickly from PVA fibre mats than from PVA films because of the large surface area and high porosity of the fibre mats.


Author(s):  
Mona Semalty ◽  
Shikha Yadav ◽  
Ajay Semalty

As Ofloxacin is preferably absorbed from the upper part of the gastrointestinal tract and is readily soluble in the acidic environment of the stomach, the floating microspheres of ofloxacin were formulated to develop gastroretentive formulation. These floating microspheres release the drug in the stomach and upper gastrointestinal tract and thereby improve the bioavailability. In the present study, six formulations of ofloxacin hydrochloride were prepared as floating microspheres by solvent diffusion technique using polymers such as ethyl cellulose, polyvinyl pyrrolidone K-90 and poly vinyl alcohol in different ratios. The prepared microspheres were evaluated for different physicochemical tests such as particle size, percent drug entrapment, drug content uniformity, SEM, buoyancy test, and in vitro drug release studies. The results of all the physicochemical tests of all formulations were found to be satisfactory. In vitro floatability studies revealed that most of the microspheres (52.5% to 95.5%) were floatable. The in vitro drug release was found to be in the range of 39.64 to 93.64 % at the end of 6 hours. It is concluded that these floating microspheres can be selected for the development of gastroretentive drug delivery system of ofloxacin hydrochloride for potential therapeutic uses.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Balaram Gajra ◽  
Saurabh S. Pandya ◽  
Sanjay Singh ◽  
Haribhai A. Rabari

The mucoadhesive hydrogel film was prepared and optimized for the purpose of local drug delivery to oral cavity for the treatment of oral Candidiasis. The mucoadhesive hydrogel film was prepared with the poly(vinyl alcohol) by freeze/thaw crosslinking technique. 32 full factorial design was employed to optimize the formulation. Number of freeze/thaw cycles (4, 6, and 8 cycles) and the concentration of the poly(vinyl alcohol) (10, 15, and 20%) were used as the independent variables whereas time required for 50% drug release, cumulative percent of drug release at 8th hour, and “k” of zero order equation were used as the dependent variables. The films were evaluated for mucoadhesive strength, in vitro residence time, swelling study, in vitro drug release, and effectiveness against Candida albicans. The concentration of poly(vinyl alcohol) and the number of freeze/thaw cycles both decrease the drug release rate. Mucoadhesive hydrogel film with 15% poly(vinyl alcohol) and 7 freeze/thaw cycles was optimized. The optimized batch exhibited the sustained release of drug and the antifungal studies revealed that the drug released from the film could inhibit the growth of Candida albicans for 12 hours.


2014 ◽  
Vol 894 ◽  
pp. 369-373
Author(s):  
Nutthakritta Phromviyo ◽  
Ekaphan Swatsitang ◽  
Apiwat Chompoosor

This study investigated the use of a biodegradable polyoxalate blended with poly (vinyl alcohol) nanofibers to tailor properties of nanofibers and to control release of Rhodamine B from nanofibers. Nanofibers were prepared using an electrospinning technique. The morphology and average diameter of electrospun nanofibers were investigated using scanning electron microscopy. It was found that poly (vinyl alcohol) to polyoxalate ratio had a significant effect on the size of nanofibers (~175-403 nm). An in vitro release study showed that rate of Rhodamine B release increased with increasing poly (vinyl alcohol)/polyoxalate ratios yielding rate of release in the range of 0.1980.469 mg%/min. The mechanism of rhodamine B release can be explained by a two-stage process of diffusion and degradation. The results suggested that a water-insoluble polyoxalate could govern the rate of drug release. The ability to tune the release of chemicals from nanofibers has significant implications for controlled release of drugs.


Author(s):  
Neeraj Agrawal ◽  
M.J. Chandrasekar ◽  
U.V. Sara ◽  
Rohini A.

A macromolecular prodrug of didanosine (ddI) for oral administration was synthesized and evaluated for in-vitro drug release profile. Didanosine was first coupled to 2-hydroxy ethyl methacrylate (HEMA) through a succinic spacer to form HEMA-Suc-ddI monomeric conjugate which was subsequently polymerized to yield Poly(HEMA-Suc-ddI) conjugate. The structures of the synthesized compounds were characterized by FT-IR, Mass and 1H-NMR spectroscopy. The prodrug was subjected for in-vitro drug release studies in buffers of pH 1.2 and 7.4 mimicking the upper and lower GIT. The results showed that the drug release from the polymeric backbone takes place in a sustained manner over a period of 24 h and the amount of drug released was comparatively higher at pH 7.4 indicating that the drug release takes place predominantly at the alkaline environment of the lower GIT rather than at the acidic environment of the upper GIT. This pH dependent sustained drug release behavior of the prodrug may be capable of reducing the dose limiting toxicities by maintaining the plasma drug level within the therapeutic range and increasing t1/2 of ddI. Moreover, the bioavailability of the drug should be improved as the prodrug releases ddI predominantly in the alkaline environment which will reduce the degradation of ddI in the stomach acid.


Author(s):  
Dillip Kumar Behera ◽  
Kampal Mishra ◽  
Padmolochan Nayak

In this present work, chitosan (CS) crosslink with polyaniline (PANI) with montmorilonite (MMT) called as (CSPANI/MMT) and CS crosslink with PANI without MMT called as (CS-PANI) were prepared by employing the solution casting method. Further the formation of nanocomposites CS-PANI/MMT and CS-PANI were investigated using XRD, FTIR, SEM and tensile strength. Water uptake and swelling ratio of the CS-PANI and CS-PANI/MMT were found to decrease with increase in concentration of clay. Mechanical properties of the CS-PANI and CS-PANI/MMT were assessed in terms of tensile strength and extensibility using texture analyzer. Increase in tensile strength and reduction in extensibility was reported with increase in the nanoclay content. In vitro drug release study on CS-PANI and CS-PANI/MMT indicated pronounced sustained release of doxorubicin by the incorporation of clay particles in the CS polymer matrix. Overall CSPANI/MMT nanocomposite films exhibited improved mechanical and sustained drug release properties than CS-PANI.


Author(s):  
Kranthi Kumar Kotta ◽  
L. Srinivas

The present investigation focuses on the development of mucoadhesive tablets of captopril which are designed to prolong the gastric residence time after oral administration. Matrix tablets of captopril were formulated using four mucoadhesive polymers namely guar gum, xanthan gum, HPMC K4M and HPMC K15M and studied for parameters such as weight variation, thickness, hardness, content uniformity, swelling index, mucoadhesive force and in vitro drug release. Tablets formulated Xanthan gum or HPMC K4M with HPMC K15M provide slow release of captopril over period of 12 hr and were found suitable for maintenance portion of oral controlled release tablets. The cumulative % of drug release of formulation F9 and F10 were 90 and 92, respectively. In vitro release from these tablets was diffusion controlled and followed zero order kinetics. The ‘n’ values obtained from the pappas-karsemeyer equation suggested that all the formulation showed drug release by non-fickian diffusion mechanism. Tablets formulated Xanthan gum or HPMC K4M with HPMC K15M (1:1) were established to be the optimum formulation with optimum bioadhesive force, swelling index & desired invitro drug release. This product was further subjected to stability study, the results of which indicated no significant change with respect to Adhesive strength and in vitro drug release study.


Sign in / Sign up

Export Citation Format

Share Document