Design and Simulation of a Microcontroller Based Loudspeaker Protection System Against Amplifier Direct Current (D.C) Offsets

Author(s):  
Abiodun Ogunseye ◽  
Olamide Omolara Olusanya

A number of failure mechanisms can result in the damage of loudspeakers that are directly connected to an audio power amplifier system. One of such failure modes occurs when the amplifier circuit develops an output d.c voltage, in which case, the loudspeaker coil will be damaged by overheating. D.c offset detection circuits, usually based on simple transistor circuits are normally used to protect the loudspeaker against this failure mode. However, as effective as they are, these circuits can fail in ways that can result in loudspeaker damage. In this work, a microcontroller based circuit that monitors the critical components of a loudspeaker d.c detection circuit, namely the switching transistor and the isolating relay circuit was developed. The hardware of the developed circuit was modelled with Proteus® software and its firmware was written using MikroC® software. The modelled circuit successfully detects the presence of d.c signals and also reports the states of the isolating relay and the switching transistors when these components fail.

Author(s):  
Bhanu P. Sood ◽  
Michael Pecht ◽  
John Miker ◽  
Tom Wanek

Abstract Schottky diodes are semiconductor switching devices with low forward voltage drops and very fast switching speeds. This paper provides an overview of the common failure modes in Schottky diodes and corresponding failure mechanisms associated with each failure mode. Results of material level evaluation on diodes and packages as well as manufacturing and assembly processes are analyzed to identify a set of possible failure sites with associated failure modes, mechanisms, and causes. A case study is then presented to illustrate the application of a systematic FMMEA methodology to the analysis of a specific failure in a Schottky diode package.


2008 ◽  
Vol 21 (2) ◽  
pp. 243-249
Author(s):  
Andjelija Raicevic

Starting from the fact that the amplitude of the basic harmonics of the current, flowing through load resistor of the class E power amplifier, is proportional to direct current flowing through the collector battery of the switching transistor, an introduction of a current mirror in emitter circuit of the transistor in whose reference branch is situated a generator of modulating voltage is proposed. It can be easily proven that the total current of this mirror, which is also the direct current of the collector battery, has the waveform of the amplitude modulated signal. This amplitude modulator is verified for performance with pSpace model. .


2020 ◽  
Vol 54 (27) ◽  
pp. 4253-4268
Author(s):  
Mou Haolei ◽  
Xie Jiang ◽  
Zou Jun ◽  
Feng Zhenyu

To research the failure of carbon fiber-reinforced composite laminated specimens, the tensile tests and compressive tests were conducted for [90]16 and [0]16 specimens, and the shear tests were conducted for [±45]4s specimens, and the microscopic failure mechanisms were observed by scanning electron microscopy. To research the failure and energy absorption of different thin-walled structures with different layups, the quasi-static axial crushing tests were conducted for [±45/0/0/90/0]s and [0/90]3s circular tubes, [0/90]3s and [±45]3s square tubes, [0/90]4s and [±45]4s sinusoidal specimens, and the internal failure were further investigated by 3D X-ray scan. Based on the load-displacement curves, the energy absorptions were evaluated and compared according to specific energy absorption and peak crushing force, and the relationships between failure modes and specific energy absorption, peak crushing force were further researched. The results show that the macroscopic failure modes are the collective results of varieties of microscopic failure mechanisms, such as fiber fracture, matrix deformation and cracking, interlamination and intralamination cracks, cracks propagation, etc. The [±45/0/0/90/0]s circular tube shows the transverse shearing failure mode with high specific energy absorption. The [±45]3s square tube and [±45]3s sinusoidal specimen show the local buckling failure mode with low specific energy absorption. The [0/90]4s sinusoidal specimen, [0/90]3s circular tube, and [0/90]3s square tube show the lamina bending failure mode with medium specific energy absorption. The failure mode of thin-walled structure can be changed by reasonable layups design, and the energy absorption can further be improved.


2018 ◽  
Vol 64 (4) ◽  
pp. 269-283
Author(s):  
M. Kaszubska ◽  
R. Kotynia

AbstractThe aim of the paper is to investigate the shear failure mechanisms in T-shape, single span and simply supported beams exclusively reinforced with longitudinal glass fiber reinforced polymer (GFRP) bars. Usually the critical shear crack in RC beams without stirrups develops through the theoretical compression strut reducing the shear strength following the shear failure. The main parameter affecting the crack pattern and the shear strength of the beams is the shear slenderness. However, the test results presented in the paper indicated the new arching effect due to the bond losing between the GFRP flexural reinforcement and concrete. This failure mode revealed unexpected critical crack pattern and failure mode. The research of concrete beams flexurally reinforced with GFRP bars without stirrups indicated two failure modes: typical shear-compression and a new one leading by the bond losing between the ordinary reinforcement and concrete.


Author(s):  
Cha-Ming Shen ◽  
Tsan-Cheng Chuang ◽  
Jie-Fei Chang ◽  
Jin-Hong Chou

Abstract This paper presents a novel deductive methodology, which is accomplished by applying difference analysis to nano-probing technique. In order to prove the novel methodology, the specimens with 90nm process and soft failures were chosen for the experiment. The objective is to overcome the difficulty in detecting non-visual, erratic, and complex failure modes. And the original idea of this deductive method is based on the complete measurement of electrical characteristic by nano-probing and difference analysis. The capability to distinguish erratic and invisible defect was proven, even when the compound and complicated failure mode resulted in a puzzling characteristic.


Author(s):  
Martin Versen ◽  
Dorina Diaconescu ◽  
Jerome Touzel

Abstract The characterization of failure modes of DRAM is often straight forward if array related hard failures with specific addresses for localization are concerned. The paper presents a case study of a bitline oriented failure mode connected to a redundancy evaluation in the DRAM periphery. The failure mode analysis and fault modeling focus both on the root-cause and on the test aspects of the problem.


Author(s):  
Elena Bartolomé ◽  
Paula Benítez

Failure Mode and Effect Analysis (FMEA) is a powerful quality tool, widely used in industry, for the identification of failure modes, their effects and causes. In this work, we investigated the utility of FMEA in the education field to improve active learning processes. In our case study, the FMEA principles were adapted to assess the risk of failures in a Mechanical Engineering course on “Theory of Machines and Mechanisms” conducted through a project-based, collaborative “Study and Research Path (SRP)” methodology. The SRP is an active learning instruction format which is initiated by a generating question that leads to a sequence of derived questions and answers, and combines moments of study and inquiry. By applying the FMEA, the teaching team was able to identify the most critical failures of the process, and implement corrective actions to improve the SRP in the subsequent year. Thus, our work shows that FMEA represents a simple tool of risk assesment which can serve to identify criticality in educational process, and improve the quality of active learning.


2016 ◽  
Vol 33 (6) ◽  
pp. 830-851 ◽  
Author(s):  
Soumen Kumar Roy ◽  
A K Sarkar ◽  
Biswajit Mahanty

Purpose – The purpose of this paper is to evolve a guideline for scientists and development engineers to the failure behavior of electro-optical target tracker system (EOTTS) using fuzzy methodology leading to success of short-range homing guided missile (SRHGM) in which this critical subsystems is exploited. Design/methodology/approach – Technology index (TI) and fuzzy failure mode effect analysis (FMEA) are used to build an integrated framework to facilitate the system technology assessment and failure modes. Failure mode analysis is carried out for the system using data gathered from technical experts involved in design and realization of the EOTTS. In order to circumvent the limitations of the traditional failure mode effects and criticality analysis (FMECA), fuzzy FMCEA is adopted for the prioritization of the risks. FMEA parameters – severity, occurrence and detection are fuzzifed with suitable membership functions. These membership functions are used to define failure modes. Open source linear programming solver is used to solve linear equations. Findings – It is found that EOTTS has the highest TI among the major technologies used in the SRHGM. Fuzzy risk priority numbers (FRPN) for all important failure modes of the EOTTS are calculated and the failure modes are ranked to arrive at important monitoring points during design and development of the weapon system. Originality/value – This paper integrates the use of TI, fuzzy logic and experts’ database with FMEA toward assisting the scientists and engineers while conducting failure mode and effect analysis to prioritize failures toward taking corrective measure during the design and development of EOTTS.


Sign in / Sign up

Export Citation Format

Share Document