scholarly journals Growth Media Conditions for Large-Scale Fermentation of Bacillus subtilis FWC1, B. amyloliquefaciens NAAS1, and Pichia farinosa NAAS2

2021 ◽  
Vol 39 (3) ◽  
pp. 87-93
Author(s):  
Heeseop Yoo ◽  
Yonghee Yoon ◽  
Sejong Oh
1988 ◽  
Vol 34 (3) ◽  
pp. 256-261 ◽  
Author(s):  
Michael P. Heaton ◽  
Robert B. Johnston ◽  
Thomas L. Thompson

An alanine racemase (EC 5.1.1.1) mutant (Dal−) of Bacillus subtilis required small amounts of D-alanine to synthesize an osmotically stable cell wall in certain growth media. Investigation of the conditions which caused lysis in hypotonic media revealed that in addition to complex media, such as nutrient broth and acid-hydrolyzed casein, glycine inhibited stable cell wall formation. D-Alanine prevented the glycine inhibition. Up to 99% lysis occurred in both dilute and dense cell suspensions (optical densities up to 110) within 2.5 h after adding 1% glycine to late log phase cultures. Intracellular enzymes recovered from the lysate were as active as those from lysozyme-disrupted cells. No amino acid tested other than glycine induced lysis. Dal− mutants can be used for controlled lysis of bacterial cells to facilitate the isolation of normal intracellular constituents and bioengineered products from fermentation processes. Cell walls of most bacteria contain D-alanine; thus, this strategy should be applicable to a wide variety of microorganisms.


2017 ◽  
Vol 13 (2) ◽  
pp. 191
Author(s):  
Anak Agung Istri Ratnadewi ◽  
Moch. Yoris Alidion ◽  
Agung Budi Santoso ◽  
Ika Oktavianawatia

<p>Endo-β-1,4-D-xylanase is a hydrolytic enzyme that breakdown the 1.4 chain of xylan polysaccharide. We have succes to transform the plasmid pET-Endo gene encoding endo-1,4-β-D-xylanase from Bacillus sp. originally from termites abdominal to E. coli BL21. The clone was ready for large scale of enzyme production. To reduce production cost, we look for subtitute media for the expensive Luria Berthani broth. Chicken guts broth is good alternative while rich of protein and very cheap. The content of N dissolved chicken guts broth reaches 87 % of LB broth. Growth of E. Coli BL21 in Chicken guts broth and LB broth (as control) was observed by Optical Density (OD) using spectrofotometer. Concentration of glucose added in broth and incubation temperature was varied. The result showed that optimal growth was in addition of 1.5 % glucose and incubated at  37 <sup>o</sup>C for 16 h. This optimal condition was used to grow E. coli BL21 pET-Endo for xylanase production. Enzyme purification was done by Ni-NTA affinity chromatography. Highest protein yield was 0.076 mg/mL obtained in 100 mM imidazole elucidation. The activity and specific activity of xylanase were estimated as 0.042 U/mL and 0.556 U/µg, respectively. The purification factor was 3.16 time and the molecular weight of enzyme was ± 30, 000 Dalton</p>


2021 ◽  
pp. 153537022110301
Author(s):  
Caio Coutinho de Souza ◽  
Jander Matos Guimarães ◽  
Soraya dos Santos Pereira ◽  
Luis André Morais Mariúba

Bacillus subtilis is a successful host for producing recombinant proteins. Its GRAS (generally recognized as safe) status and its remarkable innate ability to absorb and incorporate exogenous DNA into its genome make this organism an ideal platform for the heterologous expression of bioactive substances. The factors that corroborate its value can be attributed to the scientific knowledge obtained from decades of study regarding its biology that has fostered the development of several genetic engineering strategies, such as the use of different plasmids, engineering of constitutive or double promoters, chemical inducers, systems of self-inducing expression with or without a secretion system that uses a signal peptide, and so on. Tools that enrich the technological arsenal of this expression platform improve the efficiency and reduce the costs of production of proteins of biotechnological importance. Therefore, this review aims to highlight the major advances involving recombinant expression systems developed in B. subtilis, thus sustaining the generation of knowledge and its application in future research. It was verified that this bacterium is a model in constant demand and studies of the expression of recombinant proteins on a large scale are increasing in number. As such, it represents a powerful bacterial host for academic research and industrial purposes.


2020 ◽  
Vol 64 ◽  
pp. 104992
Author(s):  
Lihua Fan ◽  
Furong Hou ◽  
Aliyu Idris Muhammad ◽  
Balarabe Bilyaminu Ismail ◽  
Ruiling lv ◽  
...  

2018 ◽  
Vol 28 (2) ◽  
pp. 3-12
Author(s):  
N. Phuyal ◽  
P. K. Jha ◽  
P. P. Raturi ◽  
S. Gurung ◽  
S. Rajbhandary

The common method of propagation is through seeds but seed germination in Zanthoxylum armatum is very low due to the presence of hard seed coat, which might be a great hurdle for large scale production of plantlets. So an attempt was made in this study to see the effect of different growth hormones, their concentrations and different rooting media on the rooting and sprouting of Z. armatum. The stem cuttings of Z. armatum were treated with two types of auxins namely Indole-3-Butyric Acid (IBA) and Naphthalene Acetic Acid (NAA) at different concentrations (2000 ppm, 3000 ppm and 5000 ppm), while the untreated cuttings were used as control. The cuttings were planted in three different rooting media: sand, neopeat and mix (containing a mixture of sand, soil and vermin-compost). The completely randomized design was used for the experiment. The total number of stem cuttings of Z. armatum used in the experiment was 1080 for 18 treatments in three replicates (20 cuttings per treatment x 18 treatments x 3 replicates). The experiment was set up in controlled greenhouse conditions at Dabur Nepal Private Limited Nursery, Banepa, Kavre District. The parameters evaluated were root length, shoot length and number of roots per cutting. The collected data were analyzed statistically using R-program with Agricola. Least significant difference (LSD) and Duncan multiple Range Test (DMRT), as mean separation technique was applied to identify the most efficient treatment in the rooting and shooting behavior of Z. armatum (Gomez and Gomez, 1984). Hormone concentration and growth media significantly affected the rooting and shooting ability of Z. armatum stem cuttings. IBA was found to be more effective than NAA. Neopeat medium was better than sand and mix media. The highest number of roots (6.5) and root length (11.6 cm) were recorded under IBA 5000 ppm in neopeat medium.


1970 ◽  
Vol 16 (10) ◽  
pp. 973-981
Author(s):  
Gy. Barabas ◽  
B. M. Mehta ◽  
D. J. Kushner

Proflavine binding of a sensitive strain of Bacillus subtilis and of a resistant strain derived from it was compared. Proflavine was bound very rapidly and more was bound at 0 °C than at 37 °C. Boiling increased the proflavine-binding capacity at 37 °C of sensitive but not of resistant cells. The binding capacity of sensitive and resistant cells suspended in buffer was the same; this was also true in various growth media. If cells were able to grow in the presence of proflavine their proflavine content decreased.Bound proflavine was released when cells were treated with growth media or with the salts of growth media. Sodium salts of organic acids also caused a release. This effect seemed due to their Na+ content, and was somewhat higher for resistant than for sensitive cells. The mechanism of proflavine resistance in B. subtilis is probably different from that of Escherichia coli, which is thought to depend on an energy-driven release of bound proflavine.


2020 ◽  
Vol 86 (17) ◽  
Author(s):  
Xiaopei Zhang ◽  
Amal Al-Dossary ◽  
Myer Hussain ◽  
Peter Setlow ◽  
Jiahe Li

ABSTRACT The bacterium Bacillus subtilis has long been an important subject for basic studies. However, this organism has also had industrial applications due to its easy genetic manipulation, favorable culturing characteristics for large‐scale fermentation, superior capacity for protein secretion, and generally recognized as safe (GRAS) status. In addition, as the metabolically dormant form of B. subtilis, its spores have attracted great interest due to their extreme resistance to many environmental stresses, which makes spores a novel platform for a variety of applications. In this review, we summarize both conventional and emerging applications of B. subtilis spores, with a focus on how their unique characteristics have led to innovative applications in many areas of technology, including generation of stable and recyclable enzymes, synthetic biology, drug delivery, and material sciences. Ultimately, this review hopes to inspire the scientific community to leverage interdisciplinary approaches using spores to address global concerns about food shortages, environmental protection, and health care.


2020 ◽  
Vol 86 (12) ◽  
Author(s):  
Anna K. Wronska ◽  
Meinske P. Haak ◽  
Ellen Geraats ◽  
Eva Bruins Slot ◽  
Marcel van den Broek ◽  
...  

ABSTRACT Biotin, an important cofactor for carboxylases, is essential for all kingdoms of life. Since native biotin synthesis does not always suffice for fast growth and product formation, microbial cultivation in research and industry often requires supplementation of biotin. De novo biotin biosynthesis in yeasts is not fully understood, which hinders attempts to optimize the pathway in these industrially relevant microorganisms. Previous work based on laboratory evolution of Saccharomyces cerevisiae for biotin prototrophy identified Bio1, whose catalytic function remains unresolved, as a bottleneck in biotin synthesis. This study aimed at eliminating this bottleneck in the S. cerevisiae laboratory strain CEN.PK113-7D. A screening of 35 Saccharomycotina yeasts identified six species that grew fast without biotin supplementation. Overexpression of the S. cerevisiae BIO1 (ScBIO1) ortholog isolated from one of these biotin prototrophs, Cyberlindnera fabianii, enabled fast growth of strain CEN.PK113-7D in biotin-free medium. Similar results were obtained by single overexpression of C. fabianii BIO1 (CfBIO1) in other laboratory and industrial S. cerevisiae strains. However, biotin prototrophy was restricted to aerobic conditions, probably reflecting the involvement of oxygen in the reaction catalyzed by the putative oxidoreductase CfBio1. In aerobic cultures on biotin-free medium, S. cerevisiae strains expressing CfBio1 showed a decreased susceptibility to contamination by biotin-auxotrophic S. cerevisiae. This study illustrates how the vast Saccharomycotina genomic resources may be used to improve physiological characteristics of industrially relevant S. cerevisiae. IMPORTANCE The reported metabolic engineering strategy to enable optimal growth in the absence of biotin is of direct relevance for large-scale industrial applications of S. cerevisiae. Important benefits of biotin prototrophy include cost reduction during the preparation of chemically defined industrial growth media as well as a lower susceptibility of biotin-prototrophic strains to contamination by auxotrophic microorganisms. The observed oxygen dependency of biotin synthesis by the engineered strains is relevant for further studies on the elucidation of fungal biotin biosynthesis pathways.


1995 ◽  
Vol 73 (11) ◽  
pp. 1750-1760 ◽  
Author(s):  
Iftikhar Ahmad ◽  
David Malloch ◽  
John Bissett

Phosphinothricin is a microbial toxin currently under development as a selective weed killer in the cultivation of transgenic plants engineered to resist its presence. Here it is shown that phosphinothricin is inhibitory to antagonistic soil microorganisms including Bacillus subtilis, Pseudomonas flourescens, and many species of Trichoderma. Phosphinothricin was also inhibitory to the phytopathogenic fungi Rhizoctonia solani and Sclerotinia sclerotiorum. In contrast, phytopathogens Fusarium oxysporum and Pythium aphanidermatum were highly resistant to phosphinothricin. In pathogen–antagonist challenges, species of Trichoderma that parasitize F. oxysporum and P. aphanidermatum were eliminated when phosphinothricin was added to the growth media. Similarly, the ability of Pseudomonas fluorescens to exclude Pythium aphanidermatum was markedly affected by the presence of phosphinothricin in the media. The dominance equilibrium between Trichoderma species and the bacterium Bacillus subtilis was influenced in favor of the former at 0 and 5 mM concentrations of the herbicide and in favor of the latter at 1 mM concentrations. Pseudomonas fluorescens was unable to exclude Trichoderma species regardless of the phosphinothricin concentration in the media. Key words: phosphinothricin, pathogens, fungi, bacteria, antagonists, biocontrol.


Sign in / Sign up

Export Citation Format

Share Document