scholarly journals The effect of mesenchymal stromal cells of various origins on mortality and neurologic deficit in acute ischemia-reperfusion in rats

2021 ◽  
Vol 9 (2) ◽  
Author(s):  
S. Konovalov ◽  
◽  
V. Moroz ◽  
N. Konovalova ◽  
O. Deryabina ◽  
...  

Stroke is a global epidemic issue and the second leading cause of death in the world and in Ukraine. According to official statistics, every year 100-110 thousand Ukrainians suffer acute cerebrovascular disorders. One third of such patients are of working age, up to 50 % will have a disability, and only one in ten will fully return to full life. So far, promising experimental data on the treatment of neurological dysfunction using mesenchymal stromal cells (MSCs) have been obtained. The aim of study is to compare the effect of MSCs of different origins on mortality and neurologic deficit in rats with acute cerebral ischemia-reperfusion injury (CIRI). Materials and methods. Transient bilateral 20-minute occlusion of internal carotid arteries was modeled in male Wistar rats aged 4 months and animals were injected intravenously with MSCs derived from human umbilical cord Wharton's-jelly (hWJ-MSC), human and rat adipose tissue. Other groups of experimental animals were injected intravenously with rat fetal fibroblasts and cell lysate from hWJ-MSC. The last group of rats received Citicoline at a dose of 250 mg/kg as a reference drug. Control animals were injected intravenously with normal saline. The cerebroprotective effect of therapy was assessed by mortality and neurologic deficit in rats on the McGraw's stroke index score. Results. After 12 hours of observation in the crucial period in the development of experimental acute cerebrovascular disorders with the administration of hWJ-MSC, mortality was only 10 % against 45 % of animals in the control group. The use of rat fetal fibroblasts reduced the mortality of animals compare to the control group by an average of 25 %. CIRI in rats caused severe neurologic deficits: paralysis, paresis, ptosis, circling behavior. On the 7th day of observation in the control group of animals, the mean score on the McGrow's stroke index indicated severe neurological disorders. On the 14th day of observation in this group of animals there was no complete recovery of lost central nervous system functions. Compared with the control group of animals, all the treatment agents for acute CIRI (MSCs of various origins, MSC's lysate and Citicoline) contributed to a significant regression of neurologic deficit. Conclusions. Thus, transplantation of human Wharton's jelly-derived MSCs and rat fetal fibroblasts reduced mortality and alleviated neurological symptoms in rats with experimental ischemic stroke. hWJ-MSC, rat fetal fibroblasts, and rat adipose-derived MSCs reduced the incidence of neurological disorders better than Citicoline, which was accompanied by a regression of neurologic deficit dynamics on the 14th day of follow-up. The ability of stem cells of different origins to reduce neurologic deficit indicates the feasibility of their use in experimental acute cerebral ischemia.

2011 ◽  
Vol 26 (suppl 1) ◽  
pp. 14-20 ◽  
Author(s):  
Vilma Leite de Sousa Pires ◽  
José Reniclebson Feitosa de Souza ◽  
Sergio Botelho Guimarães ◽  
Antonio Ribeiro da Silva Filho ◽  
José Huygens Parente Garcia ◽  
...  

PURPOSE: To investigate the effect of L-alanyl-L-glutamine (L-Ala-Gln) preconditioning in an acute cerebral ischemia/reperfusion (I/R) model in gerbils. METHODS: Thirty-six Mongolian gerbils (Meriones unguiculatus), (60-100g), were randomized in 2 groups (n=18) and preconditioned with saline 2.0 ml (Group-S) or 0.75g/Kg of L-Ala-Gln, (Group-G) administered into the femoral vein 30 minutes prior to I/R. Each group was divided into three subgroups (n=6). Anesthetized animals (urethane, 1.5g/Kg, i.p.) were submitted to bilateral occlusion of common carotid arteries during 15 minutes. Samples (brain tissue and arterial blood) were collected at the end of ischemia (T0) and after 30 (T30) and 60 minutes (T60) for glucose, lactate, myeloperoxidase (MPO), thiobarbituric acid reactive substances (TBARS), glutathione (GSH) assays and histopathological evaluation. RESULTS: Glucose and lactate levels were not different in studied groups. However glycemia increased significantly in saline groups at the end of the reperfusion period. TBARS levels were significantly different, comparing treated (Group-G) and control group after 30 minutes of reperfusion (p<0.05) in cerebral tissue. Pretreatment with L-Ala-Gln promoted a significant increase in cerebral GSH contents in Group-G at T30 (p<0.001) time-point compared with Group-S. At T30 and T60, increased levels of GSH occurred in both time-points. There were no group differences regarding MPO levels. Pyknosis, presence of red neurons and intracellular edema were significantly smaller in Group-G. CONCLUSION: Preconditioning with L-Ala-Gln in gerbils submitted to cerebral ischemia/reperfusion reduces oxidative stress and degeneration of the nucleus (pyknosis) and cell death (red neurons) in the cerebral tissue.


2019 ◽  
Vol 51 (8) ◽  
pp. 767-777 ◽  
Author(s):  
Jing Wang ◽  
Ruohan Sun ◽  
Zhenzhu Li ◽  
Yujun Pan

Abstract Ischemic stroke has become one of the leading causes of deaths and disabilities all over the world. In this study, we investigated the therapeutic effects of combined bone marrow stromal cells (BMSCs) and oxiracetam treatments on acute cerebral ischemia/reperfusion (I/R) injury. A rat model of middle cerebral artery occlusion (MCAO) followed by complete reperfusion, as well as a cortex neuron oxygen-glucose deprivation (OGD) model was established. When compared with BMSCs or oxiracetam monotherapy, combination therapy significantly improved functional restoration with decreased infarct volume in observed ischemic brain. We propose that it may occur through the transient receptor potential canonical (TRPC)6 neuron survival pathway. The increased expression of TRPC6 along with the reduction of neuronal cell death in the OGD cortex neurons and combination therapy group indicated that the TRPC6 neuron survival pathway plays an important role in the combined BMSCs and oxiracetam treatments. We further tested the activity of the calpain proteolytic system, and the results suggested that oxiracetam could protect the integrity of TRPC6 neuron survival pathway by inhibiting TRPC6 degradation. The protein levels of phospho-cAMP response element binding protein (p-CREB) were tested. It was found that BMSCs play a role in the activation of the TRPC6 pathway. Our study suggests that the TRPC6 neuron survival pathway plays a significant role in the protective effect of combined BMSCs and oxiracetam treatments on acute cerebral I/R injury. Combined therapy could inhibit the abnormal degradation of TRPC6 via decreasing the activity of calpain and increasing the activation of TRPC6 neuron survival pathway.


2019 ◽  
Vol 5 (3) ◽  
pp. 87-94
Author(s):  
Natalia I. Nesterova ◽  
Olesya V. Shcheblykina ◽  
Pavel D. Kolesnichenko ◽  
Arkady V. Nesterov ◽  
Dmitry V. Shcheblykin ◽  
...  

Introduction: At present, the problem of pharmacological correction of free radical processess emerges full-blown. The aim of the study is an experimental study of the neuroprotective effect of taurine and 3-hydroxypyridine derivatives. Materials and methods: The study was performed in Wistar rats. The neuroprotective effect of the substances was studied in the intracerebral hemorrhage model. Results and discussion: The administration of the studied substances had a positive effect on the survival of the animals within the first day (50% of rats died in the control group, 30% – in the Mexidol- and Ethoxidol-treated groups, and 20% – in LKhT 3-17-treated group). Within the first day after the surgery, all rats with stroke had severe neurological disorders. However, by the 3rd day, the Ethoxidol- and LKhT 3-17-treated rats had a lower neurological deficit. By Day 14, all groups of animals treated with the test substances had a lower severity of post-stroke disorders than those in the control group, which was evident as a 1.5-time lower McGraw Stroke Index score. LKhT 3-17 substance showed the most pronounced neuroprotective effect. Conclusions: The studied derivatives of taurine and 3-hydroxypyridine have a neuroprotective effect, which is manifested in the lower severity of neurological disorders,a more rapid reduction in the signs of neurodegeneration and accelerated hemorrhage processes.


2020 ◽  
Vol 23 (3) ◽  
pp. 214-224 ◽  
Author(s):  
Esra Cakir ◽  
Ufuk Cakir ◽  
Cuneyt Tayman ◽  
Tugba Taskin Turkmenoglu ◽  
Ataman Gonel ◽  
...  

Background: Activated inflammation and oxidant stress during cerebral ischemia reperfusion injury (IRI) lead to brain damage. Astaxanthin (ASX) is a type of carotenoid with a strong antioxidant effect. Objective: The aim of this study was to investigate the role of ASX on brain IRI. Methods: A total of 42 adult male Sprague-Dawley rats were divided into 3 groups as control (n=14) group, IRI (n=14) group and IRI + ASX (n=14) group. Cerebral ischemia was instituted by occluding middle cerebral artery for 120 minutes and subsequently, reperfusion was performed for 48 hours. Oxidant parameter levels and protein degradation products were evaluated. Hippocampal and cortex cell apoptosis, neuronal cell count, neurological deficit score were evaluated. Results: In the IRI group, oxidant parameter levels and protein degradation products in the tissue were increased compared to control group. However, these values were significantly decreased in the IRI + ASX group (p<0.05). There was a significant decrease in hippocampal and cortex cell apoptosis and a significant increase in the number of neuronal cells in the IRI + ASX group compared to the IRI group alone (p<0.05). The neurological deficit score which was significantly lower in the IRI group compared to the control group was found to be significantly improved in the IRI + ASX group (p<0.05). Conclusion: Astaxanthin protects the brain from oxidative damage and reduces neuronal deficits due to IRI injury.


1998 ◽  
Vol 274 (3) ◽  
pp. R822-R829 ◽  
Author(s):  
Long-En Chen ◽  
Anthony V. Seaber ◽  
Rima M. Nasser ◽  
Jonathan S. Stamler ◽  
James R. Urbaniak

The ultimate goal of replantation and microsurgical reconstructive operations is to regain or improve impaired function of the tissue. However, the data related to the influence of NO on tissue function are limited. This study evaluated the effects of the NO donor S-nitroso- N-acetylcysteine (SNAC) on contractile function of skeletal muscle during reperfusion. Forty-nine rats were divided into six groups. The extensor digitorum longus (EDL) muscles in groups I and II were not subjected to ischemia-reperfusion but were treated with a low (100 nmol/min) or high (1 μmol/min) dose of SNAC. In groups III- V, the EDL underwent 3 h of ischemia and 3 h of reperfusion and was also treated with low (100 nmol/min) or high doses (1 or 5 μmol/min) of SNAC. Group VI was a phosphate-buffered saline (PBS)-treated control group. Twenty additional animals were used to document systemic effects of SNAC and PBS only. SNAC or PBS was infused for 6.5 h, beginning 30 min before ischemia and continuing throughout the duration of reperfusion. Contractile testing compared the maximal twitch force, isometric tetanic contractile forces, fatigue, and fatigue half time of the experimental EDL and the contralateral nontreated EDL. The findings indicate that 1) SNAC does not influence contractile function of EDL muscle not subjected to ischemia-reperfusion, 2) SNAC significantly protects the contractile function of ischemic skeletal muscle against reperfusion injury in the early reperfusion period, and 3) the protective role of SNAC is critically dosage dependent; protection is lost at higher doses. The conclusion from this study is that supplementation with exogenous NO exerts a protective effect on the tissue against reperfusion injury.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Lu ◽  
Shan-mei Shen ◽  
Qing Ling ◽  
Bin Wang ◽  
Li-rong Li ◽  
...  

Abstract Background The preservation or restoration of β cell function in type 1 diabetes (T1D) remains as an attractive and challengeable therapeutic target. Mesenchymal stromal cells (MSCs) are multipotent cells with high capacity of immunoregulation, which emerged as a promising cell-based therapy for many immune disorders. The objective of this study was to examine the efficacy and safety of one repeated transplantation of allogeneic MSCs in individuals with T1D. Methods This was a nonrandomized, open-label, parallel-armed prospective study. MSCs were isolated from umbilical cord (UC) of healthy donors. Fifty-three participants including 33 adult-onset (≥ 18 years) and 20 juvenile-onset T1D were enrolled. Twenty-seven subjects (MSC-treated group) received an initial systemic infusion of allogeneic UC-MSCs, followed by a repeat course at 3 months, whereas the control group (n = 26) only received standard care based on intensive insulin therapy. Data at 1-year follow-up was reported in this study. The primary endpoint was clinical remission defined as a 10% increase from baseline in the level of fasting and/or postprandial C-peptide. The secondary endpoints included side effects, serum levels of HbA1c, changes in fasting and postprandial C-peptide, and daily insulin doses. Results After 1-year follow-up, 40.7% subjects in MSC-treated group achieved the primary endpoint, significantly higher than that in the control arm. Three subjects in MSC-treated group, in contrast to none in control group, achieved insulin independence and maintained insulin free for 3 to 12 months. Among the adult-onset T1D, the percent change of postprandial C-peptide was significantly increased in MSC-treated group than in the control group. However, changes in fasting or postprandial C-peptide were not significantly different between groups among the juvenile-onset T1D. Multivariable logistic regression assay indicated that lower fasting C-peptide and higher dose of UC-MSC correlated with achievement of clinical remission after transplantation. No severe side effects were observed. Conclusion One repeated intravenous dose of allogeneic UC-MSCs is safe in people with recent-onset T1D and may result in better islet β cell preservation during the first year after diagnosis compared to standard treatment alone. Trial registration ChiCTR2100045434. Registered on April 15, 2021—retrospectively registered, http://www.chictr.org.cn/


Author(s):  
Massimo Leone ◽  
Fausto Ciccacci ◽  
Stefano Orlando ◽  
Sandro Petrolati ◽  
Giovanni Guidotti ◽  
...  

Eighty percent of people with stroke live in low- to middle-income nations, particularly in sub-Saharan Africa (SSA) where stroke has increased by more than 100% in the last decades. More than one-third of all epilepsy−related deaths occur in SSA. HIV infection is a risk factor for neurological disorders, including stroke and epilepsy. The vast majority of the 38 million people living with HIV/AIDS are in SSA, and the burden of neurological disorders in SSA parallels that of HIV/AIDS. Local healthcare systems are weak. Many standalone HIV health centres have become a platform with combined treatment for both HIV and noncommunicable diseases (NCDs), as advised by the United Nations. The COVID-19 pandemic is overwhelming the fragile health systems in SSA, and it is feared it will provoke an upsurge of excess deaths due to the disruption of care for chronic diseases such as HIV, TB, hypertension, diabetes, and cerebrovascular disorders. Disease Relief through Excellent and Advanced Means (DREAM) is a health programme active since 2002 to prevent and treat HIV/AIDS and related disorders in 10 SSA countries. DREAM is scaling up management of NCDs, including neurologic disorders such as stroke and epilepsy. We described challenges and solutions to address disruption and excess deaths from these diseases during the ongoing COVID-19 pandemic.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A206-A206
Author(s):  
Lina Barker ◽  
Maja Tippmann-Peikert

Abstract Introduction While REM sleep without atonia (RSWA) in REM sleep behavior disorder (RBD) is associated with male sex, age greater than or equal to 50 years, alpha-synucleinopathies, and narcolepsy, the characteristics of patients with RSWA/persistent periodic limb movements of sleep in REM sleep (RSWA/PLMS-REM) without dream enactment behaviors are unexplored. The aim of this study was to compare the demographics, comorbidities, and concomitant medication use between RSWA/PLMS-REM patients and non-RSWA/non-PLMS-REM controls. Based on anecdotal clinical observations, we hypothesized that these patients are more commonly young, women, have psychiatric or neurological diseases, and use antidepressants. Methods We conducted a retrospective review of the Mayo Clinic electronic medical record to identify all patients with RSWA/PLMS-REM between November 2018 and November 2020. After excluding all patients with RBD, restless legs syndrome, narcolepsy, and RSWA/non-PLMS-REM, we identified 27 patients. All in-lab polysomnograms (PSGs) were reviewed to calculate the periodic limb movement index per hour of REM sleep (REM-PLMI). We also identified a control group of 15 individuals without RSWA, reviewed their PSGs, and calculated the REM-PLMI. Results The mean REM-PLMI of patients with RSWA was 64 +/- 8.3 (standard error of mean (SEM)) per hour versus 1 +/- 0.6 (SEM) per hour in non-RSWA controls (p &lt; 0.001). Patients with RSWA/PLMS-REM and non-RSWA controls had similar age and gender, 62 +/- 3 (SEM) versus 58 +/- 3 (SEM) years and 81% versus 87% men, respectively. However, psychiatric diagnosis, neurological disorders, and antidepressants use were more common among RSWA/PLMS-REM patients compared to non-RSWA controls with p = 0.0002, p = 0.0035 and p = 0.0074 respectively (Fisher’s Exact Test). Conclusion Psychiatric diagnosis, neurological disorders, and antidepressant use are more common among RSWA/PLMS-REM patients compared to non-RSWA/non-PLMS-REM controls. Further research to determine the implications of a diagnosis of RSWA/PLMS-REM for the future development of alpha-synucleinopathies are needed and currently ongoing. Support (if any):


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Zhimei Qiu ◽  
Yan Wang ◽  
Weiwei Liu ◽  
Chaofu Li ◽  
Ranzun Zhao ◽  
...  

AbstractAutophagy and apoptosis are involved in myocardial ischemia/reperfusion (I/R) injury. Research indicates that circular RNA HIPK3 (circHIPK3) is crucial to cell autophagy and apoptosis in various cancer types. However, the role of circHIPK3 in the regulation of cardiomyocyte autophagy and apoptosis during I/R remains unknown. Our study aimed to examine the regulatory effect of circHIPK3 during myocardial I/R and investigate its mechanism in cardiomyocyte autophagy and apoptosis. Methods and results. The expression of circHIPK3 was upregulated during myocardial I/R injury and hypoxia/reoxygenation (H/R) injury of cardiomyocytes. To study the potential role of circHIPK3 in myocardial H/R injury, we performed gain-of-function and loss-of-function analyses of circHIPK3 in cardiomyocytes. Overexpression of circHIPK3 significantly promoted H/R-induced cardiomyocyte autophagy and cell injury (increased intracellular reactive oxygen species (ROS) and apoptosis) compared to those in the control group, while silencing of circHIPK3 showed the opposite effect. Further research found that circHIPK3 acted as an endogenous miR-20b-5p sponge to sequester and inhibit miR-20b-5p activity, resulting in increased ATG7 expression. In addition, miR-20b-5p inhibitors reversed the decrease in ATG7 induced by silencing circHIPK3. Conclusions. CircHIPK3 can accelerate cardiomyocyte autophagy and apoptosis during myocardial I/R injury through the miR-20b-5p/ATG7 axis. These data suggest that circHIPK3 may serve as a potential therapeutic target for I/R.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yiqin Zhou ◽  
Haobo Li ◽  
Dong Xiang ◽  
Jiahua Shao ◽  
Qiwei Fu ◽  
...  

Abstract Introduction To evaluate the clinical efficacy of arthroscopic therapy with infrapatellar fat pad cell concentrates in treating knee cartilage lesions, we conducted a prospective randomized single-blind clinical study of controlled method. Methods Sixty cases from Shanghai Changzheng Hospital from April 2018 to December 2019 were chosen and randomly divided into 2 groups equally. Patients in the experiment group were treated through knee arthroscopy with knee infrapatellar fat pad cell concentrates containing mesenchymal stromal cells, while patients in the control group were treated through regular knee arthroscopic therapy. VAS and WOMAC scores were assessed at pre-operation, and 6 weeks, 12 weeks, 6 months, and 12 months after intervention. MORCART scores were assessed at pre-operation and 12 months after intervention. Results Twenty-nine cases in the experiment group and 28 cases in the control group were followed up. No significant difference in VAS, WOMAC, and MOCART scores were found between the two groups before surgery (P > 0.05). The WOMAC total and WOMAC function scores of the experiment group were significantly lower than those of the control group 6 months and 12 months after surgery (P < 0.05). The VAS rest and VAS motion scores of the experiment group were found significantly lower than those of the control group 12 months after surgery (P < 0.05). The MOCART scores of the experiment group were found significantly higher compared with the control group 12 months after surgery (P < 0.05). No significant difference in WOMAC stiffness scores were found between the two groups. Conclusions The short-term results of our study are encouraging and demonstrate that knee arthroscopy with infrapatellar fat pad cell concentrates containing mesenchymal stromal cells is safe and provides assistance in reducing pain and improving function in patients with knee cartilage lesions. Trial registration ChiCTR1800015379. Registered on 27 March 2018, http://www.chictr.org.cn/showproj.aspx?proj=25901.


Sign in / Sign up

Export Citation Format

Share Document