scholarly journals Diseño cinemático de un robot paralelo 2-PRR

2020 ◽  
Vol 25 (3) ◽  
pp. 372-379
Author(s):  
Sebastián Durango Idárraga ◽  
Mariline C. Delgado Martínez ◽  
César A. Álvarez Vargas ◽  
Rubén D. Flórez Hurtado ◽  
Manuel A. Flórez Ruiz

In civil construction Abstract— This paper presents a dimensional synthesis for a 2-PRR planar parallel robot with a structural plane of symmetry. This robot can achieve the translation of the moving platform without changing the orientation, being useful for applications that require controlled positions with high rigidity. Because the performance of parallel robots is highly sensitive to their geometric parameters, many methodologies to state the dimensional synthesis has been developed. We used the method of Parameter - Finiteness Normalization Method (PFNM) to state the dimensional synthesis using Global Condition Index (GCI) and workspace ( ) design atlases. For the two, GCI and , designed atlases, it is not possible to maximize one of the indexes without diminishing the other one, which represents a design compromise. Also, we remark singular configurations that are coming from specific geometry or limit positions. The complete dimensional synthesis is also presented.

2010 ◽  
Vol 166-167 ◽  
pp. 457-462
Author(s):  
Dan Verdes ◽  
Radu Balan ◽  
Máthé Koppány

Parallel robots find many applications in human-systems interaction, medical robots, rehabilitation, exoskeletons, to name a few. These applications are characterized by many imperatives, with robust precision and dynamic workspace computation as the two ultimate ones. This paper presents kinematic analysis, workspace, design and control to 3 degrees of freedom (DOF) parallel robots. Parallel robots have received considerable attention from both researchers and manufacturers over the past years because of their potential for high stiffness, low inertia and high speed capability. Therefore, the 3 DOF translation parallel robots provide high potential and good prospects for their practical implementation in human-systems interaction.


2004 ◽  
Vol 127 (5) ◽  
pp. 1021-1028 ◽  
Author(s):  
Abbas Fattah ◽  
Sunil K. Agrawal

In this paper we present a workspace analysis methodology that can be applied for optimal design of cable-suspended planar parallel robots. The significant difference between regular parallel robots and cable-suspended parallel robots is that the cables in cable-suspended robots can only carry tension forces. The workspace of a planar cable robot is characterized as the set of points where a reference point of moving platform can reach with tensions in all suspension cables. In the design of cable-suspended parallel robots, the suspension points of the cables, size and shape of the moving platform are the design variables. The workspace area and global condition index are used as the objective functions to optimize the design parameters. The global condition index is a measure of isotropicity of the manipulator. The design variables are determined for different numbers of cables using both objective functions at a specified orientation and also at different orientations of moving platform. Experimental results to measure the workspace area demonstrate the effectiveness of this method.


2013 ◽  
Vol 655-657 ◽  
pp. 1114-1118
Author(s):  
Hui Zhou ◽  
Yi Cao ◽  
Jing Hu Yu ◽  
Gui Lan Chen ◽  
Qiang Wang ◽  
...  

This paper mainly addressed the workspace analysis and performance evaluation of a special class of the 6/6 cable-suspended parallel robot. Based on the screw theory and the static equilibrium, the Jacobian matrix of the cable -suspended parallel robot is constructed. The workspace volume is characterized as the set of points where the centroid of the moving platform can reach with tensions in all suspension cables for a constant orientation. This paper attempts to tackle some aspects of optimal design of this special class of the 6/6 cable-suspended parallel robot by addressing the variations of the workspace volume and the accuracy of the robot using different geometric configurations, different ratios and orientations of the moving platform. The global condition index is used as a performance index of a robot with respect to the force and velocity transmission over the whole workspace.


2003 ◽  
Vol 126 (3) ◽  
pp. 449-455 ◽  
Author(s):  
Tian Huang ◽  
Zhanxian Li ◽  
Meng Li ◽  
Derek G. Chetwynd ◽  
Clement M. Gosselin

This paper deals with the conceptual design and optimal dimensional synthesis of a novel 2-DOF translational parallel robot for pick-and-place operations. In a conceptual design phase, the conditions for generating such kinds of parallel robots are investigated, leading to the invention of a 2-D version of the Delta robot. Combining this robot with a 1-DOF feed mechanism, a hybrid robot can be created which is particularly suitable for transporting objects at very high speed in a plane plus a relatively slow or step-by-step, yet long distance motion, normal to the plane. The kinematic optimality of the 2-DOF translational parallel robot is achieved by minimizing a global and comprehensive conditioning index subject to a set of appropriate constraints. The application of this robot to the development of a device for quality inspection of rechargeable batteries is used to demonstrate its applicability.


2011 ◽  
Vol 464 ◽  
pp. 129-132
Author(s):  
Hai Zhen Chen ◽  
Zhong Yue Zou ◽  
Hong Peng Song

Based on forward position equations of 3-RCR parallel mechanism, the Jacobian matrixes were obtained. The global condition index was gotten based on the Jacobian matrix. According to the global condition index and the polar coordinates boundary searching method, using MATLAB software, the dexterity atlases of the mechanism were gotten. Finally, the dexterity was analyzed. The research can provide theory foundation for study and application of parallel mechanism in the future.


Author(s):  
Shih-Liang Wang

Abstract A serial-parallel robot has the high stiffness and accuracy of a parallel robot, and a large workspace and compact structure of a serial robot. In this paper, the resolved force control algorithm is derived for serial-parallel robots, including a 3-articulated-arm platform robot, a linkage robot, and two cooperating serial robots. A S matrix is derived to relate joint torque to the external load. Using the principle of virtual work, S is used in resolved rate control algorithm to relate the tool velocity to joint rate. S can be easily expanded to the control of redundant actuation, and it can be used to interpret singularity. MATLAB is used to verify these control algorithms with graphical motion animation.


Author(s):  
Jens Kroneis ◽  
Peter Mu¨ller ◽  
Steven Liu

In this paper a new strategy for dynamic modeling and parameter identification of complex parallel robots including parallel crank mechanisms is presented. Based on a model reduction strategy motivated by the structure of the parallel robot SpiderMill, kinematics and dynamics are derived in a compact form by applying the modified Denavit-Hartenberg method and the Newton-Euler approach. The obtained parameter-linear dynamical description is reduced to a parameter-minimal form using analytical and numerical reduction methods. Rigid body parameters of the model are identified using optimized trajectories and linear estimators. Through the whole modeling and verification process MSC.ADAMS and Solid Edge models of the demonstrator SpiderMill are used.


Robotica ◽  
2002 ◽  
Vol 20 (4) ◽  
pp. 367-374 ◽  
Author(s):  
Guilin Yang ◽  
I-Ming Chen ◽  
Song Huat Yeo ◽  
Wee Kiat Lim

In this paper, we focus on the base and tool calibration of a self-calibrated parallel robot. After the self-calibration of a parellel robot by using the built-in sensors in the passive joints, its kinematic transformation from the robot base to the mobile platform frame can be computed with sufficient accuracy. The base and tool calibration, hence, is to identify the kinematic errors in the fixed transformations from the world frame to the robot base frame and from the mobile platform frame to the tool (end-effector) frame in order to improve the absolute positioning accuracy of the robot. Using the mathematical tools from group theory and differential geometry, a simultaneous base and tool calibration model is formulated. Since the kinematic errors in a kinematic transformation can be represented by a twist, i.e. an element of se(3), the resultant calibration model is simple, explicit and geometrically meaningful. A least-square algorithm is employed to iteratively identify the error parameters. The simulation example shows that all the preset kinematic errors can be fully recovered within three to four iterations.


2011 ◽  
Vol 3 (2) ◽  
Author(s):  
Alba Perez-Gracia

The dimensional synthesis of spatial chains for a prescribed set of positions can be applied to the design of parallel robots by joining the solutions of each serial chain at the end-effector. This design method does not provide with the knowledge about the trajectory between task positions and, in some cases, may yield a system with negative mobility. These problems can be avoided for some overconstrained but movable linkages if the finite-screw system associated with the motion of the linkage is known. The finite-screw system defining the motion of the robot is generated by a set of screws, which can be related to the set of finite task positions traditionally used in the synthesis theory. The interest of this paper lies in presenting a method to define the whole workspace of the linkage as the input task for the exact dimensional synthesis problem. This method is applied to the spatial RPRP closed linkage, for which one solution exists.


Sign in / Sign up

Export Citation Format

Share Document