scholarly journals Pyrazine-interior-embodied MOF-74 for selective CO2 adsorption

Author(s):  
meng zhao ◽  
Yujie Ban ◽  
Ze Chang ◽  
Yingwu Zhou ◽  
Kun Yang ◽  
...  

A series of pyrazine-interior-embodied MOF-74 composites (py-MOF-74) were successfully synthesized by a post vapor modification method, concomitant with the loading ratio of pyrazine easily controlled in this process. Here, pyrazine molecules perform as a cavity-occupant to block the wide pores of MOF-74, which accentuates the adsorption discrepancy of a pair of gases on MOFs and consequently reinforces the adsorption selectivity (typically for CO/N, CO/CH). Different from the “physical confinement” of occupants, pyrazine molecule with dual “para-nitrogen” atoms donates one N atom to bond with the open metal ion of MOF-74 for stability, and remains the other N atom available for potential CO trapping site. Pyrazine-interior-embodied MOF-74 composites manifest significantly improved CO/N and CO/CH adsorption selectivity. Typically, py-MOF-74c with ultimate pyrazine insertion displays selectivity greatly superior to MOF-74 in the equimolar CO/CH (598 vs. 35) and the simulated CO/N flue gas (471 vs. 49) at 100 kPa and 298 K.

2021 ◽  
Author(s):  
Xiu-Yuan Li ◽  
Wang Ying-Bo ◽  
Song Yan ◽  
Xiang Dan ◽  
Chaozheng He

Abstract A new porous metal-organic framework, [Pb5(Ac)7(nIm)3]n (1), has been successfully synthesized by employing 2-nitroimidazole ligand and Pb2+ ion. 1 contains novel the ribbon-shaped Pb-O SBU and reveals a 2D porous framework with a 1D tubular channel. Moreover, 1 shows moderate adsorption uptake towards CO2 and luminescence properties from intraligand charge transfer. We further confirmed nitro group and metal ion are important adsorption sites by GCMC simulations, and the electronic structures of 1 was investigated.


2004 ◽  
Vol 1 (1) ◽  
pp. 110-115
Author(s):  
Baghdad Science Journal

We found that 4,5- diphenyl- 3(2- propynyl) thio- 1??-triazole [1? forms a complex with Pd (11) ion of ratio 1:1 which absorbs light in CH2CI2 at 400 nm, and 4,5- diphenyl- 3(2- propenyl) thio- 1,2,4- triazole [II] forms complexes with Pd (II) ion of ratio 1:1 which absorbs light at 390 nm, and of ratio 2:1 which absorbs light at 435 nm. On the other hand, we found that the new derivative 4- phenyl- 5( p- amino phenyl) -3- mercapto- 1,2,4- triazole ?111? forms complexes with Cu (II) ion of the ratio 1:1 which absorbs light at 380 nm, with Ni (II) ion of the ratio 3:1 which absorbs light at 358 nm; and with Co (11) ion of the ratio 3.2:1 which absorbs light at 588 nm. The ratio of the complexes were determined by measuring the electronic spectra of the complexes in CH2G2 and (CH^NCHO at different concentrations ofthe ligands and f?xed ' •' of the metal ion in every case, then applying the molar ratio plots on the data. Our results were confirmed by precipitating most ofthe above complexes in solid state, and then each complex was analyzed elementally.


2014 ◽  
Vol 53 (17) ◽  
pp. 8842-8844 ◽  
Author(s):  
Yong-Qiang Chen ◽  
Yang-Kun Qu ◽  
Guo-Rong Li ◽  
Zhan-Zhong Zhuang ◽  
Ze Chang ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2088 ◽  
Author(s):  
Elizabeth Rodriguez Acevedo ◽  
Farid B. Cortés ◽  
Camilo A. Franco ◽  
Francisco Carrasco-Marín ◽  
Agustín F. Pérez-Cadenas ◽  
...  

The implementation of carbon capture and storage process (CCS) has been unsuccessful to date, mainly due to the technical issues and high costs associated with two main stages: (1) CO2 separation from flue gas and (2) CO2 injection in deep geological deposits, more than 300 m, where CO2 is in supercritical conditions. This study proposes, for the first time, an enhanced CCS process (e-CCS), in which the stage of CO2 separation is removed and the flue gas is injected directly in shallow reservoirs located at less than 300 m, where the adsorptive phenomena control CO2 storage. Nitrogen-rich carbon nanospheres were used as modifying agents of the reservoir porous texture to improve both the CO2 adsorption capacity and selectivity. For this purpose, sandstone was impregnated with a nanofluid and CO2 adsorption was evaluated at different pressures (atmospheric pressure and from 3 × 10−3 MPa to 3.0 MPa) and temperatures (0, 25, and 50 °C). As a main result, a mass fraction of only 20% of nanomaterials increased both the surface area and the molecular interactions, so that the increase of adsorption capacity at shallow reservoir conditions (50 °C and 3.0 MPa) was more than 677 times (from 0.00125 to 0.9 mmol g−1).


Nature Energy ◽  
2018 ◽  
Vol 3 (12) ◽  
pp. 1059-1066 ◽  
Author(s):  
Youssef Belmabkhout ◽  
Prashant M. Bhatt ◽  
Karim Adil ◽  
Renjith S. Pillai ◽  
Amandine Cadiau ◽  
...  

2017 ◽  
Vol 24 (08) ◽  
pp. 1750119 ◽  
Author(s):  
PING HE ◽  
XIAOLONG PENG ◽  
ZHONGZHI ZHANG ◽  
JIANG WU ◽  
NAICHAO CHEN ◽  
...  

Copper oxide (CuO) is proved to be a potential adsorbent for elemental mercury in the flue gas emitted from coal-fired power plant. However, the O-terminated CuO(110) surface has relatively week adsorption capacity for Hg. In this work, the doped method is applied to enhance the mercury adsorption capacity of O-terminated CuO(110). Mn, Si, Ti, Al and Zn are selected as the doped atom. It is found that only Zn-doped CuO (110) surfaces have the higher adsorption energy than the pure O-terminated CuO(110) surface. The mercury adsorption capacity is a complex issue, which depends on a combination of oxygen and doped element. The results suggest that the lower electropositive doped element is favorable for the improvement of mercury adsorption capacity. However, the lower electronegativity of oxygen atoms does not facilitate the mercury capture, which is different from the organic material. Cu and doped metal element, rather than oxygen atom, mainly determine mercury adsorption capacity of O-terminated CuO(110) surface, which leads to the lower adsorption capacity of the O-terminated CuO(110) surface than the Cu-terminated CuO(110) surface. The conclusions can also offer a valuable reference for the other metal oxide regarding mercury capture.


Author(s):  
Ala R. Qubbaj

In this study, a co-flow methane/air diffusion flame at Reynolds number of 6000 was numerically simulated. The co-flow air and fuel streams were diluted with Nitrogen in the range of 0% to 20%. The thermal and composition fields in the far-burner reaction zone (close to the exhaust) were computed, and the effects of diluent’s addition to the air stream (simulating FGR) and to the fuel stream (simulating FIR) were investigated. The results show that air-side dilution is very effective up to 5% diluent’s addition. For which, 95% and 65% drops in NO and CO emissions, respectively, along with a 16% increase in temperature, are predicted compared to the baseline case (0% dilution). However, beyond 5% dilution, no effect (reaction) has been predicted. On the other hand, the fuel-side dilution has shown an effect for all simulated diluent’s addition (i.e. 0%–20%). However, that effect is not systematic neither on temperature, CO or NO concentrations. For a similar 5% dilution to the fuel-side, a 14% increase in NO and a 97% decrease in CO are predicted, along with a 5.6% increase in temperature. The simulated results revealed that air-side dilution (simulating FGR) has a dramatic greater effectiveness in NO reduction, whereas, fuel-side dilution (simulating FIR) has a greater effectiveness in CO reduction. Besides, the results suggest an important role for Prompt-NO Fenimore mechanism.


Sign in / Sign up

Export Citation Format

Share Document