scholarly journals Soil multifunctionality is negatively related to microbial community stochasticity in restored grasslands

Author(s):  
Yongyong Zhang ◽  
Monika Resch ◽  
Martin Schuetz ◽  
Ziyan Liao ◽  
Beat Frey ◽  
...  

It is generally assumed that there is a relationship between microbial diversity and multiple ecosystem functions. Although it is indisputable that microbial diversity is controlled by stochastic and deterministic ecological assembly processes, the relationship between these processes and soil multifunctionality (SMF) remains less clear. In this study, we examined how different grassland restoration treatments, namely harvest only, topsoil removal and topsoil removal plus propagule addition, affected i) soil bacterial and fungal community stochasticity, ii) SMF, and iii) the relationship between community stochasticity and SMF. Results showed that soil microbial community stochasticity decreased in all the three restoration treatments, while SMF increased. Soil multifunctionality was found to be significantly and negatively correlated with soil microbial community stochasticity. Plant diversity and plant C/N indirectly influenced SMF by regulating the microbial community stochasticity. Our findings provide empirical evidence that when deterministic community assembly processes dominate in soils, then higher microbial functioning is expected.

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246263
Author(s):  
Juyan Cui ◽  
Xiaochun Yuan ◽  
Qiufang Zhang ◽  
Jiacong Zhou ◽  
Kaimiao Lin ◽  
...  

Nutrient addition to forest ecosystems significantly influences belowground microbial diversity, community structure, and ecosystem functioning. Nitrogen (N) addition in forests is common in China, especially in the southeast region. However, the influence of N addition on belowground soil microbial community diversity in subtropical forests remains unclear. In May 2018, we randomly selected 12 experimental plots in a Pinus taiwanensis forest within the Daiyun Mountain Nature Reserve, Fujian Province, China, and subjected them to N addition treatments for one year. We investigated the responses of the soil microbial communities and identified the major elements that influenced microbial community composition in the experimental plots. The present study included three N treatments, i.e., the control (CT), low N addition (LN, 40 kg N ha-1 yr-1), and high N addition (HN, 80 kg N ha-1 yr-1), and two depths, 0−10 cm (topsoil) and 10−20 cm (subsoil), which were all sampled in the growing season (May) of 2019. Soil microbial diversity and community composition in the topsoil and subsoil were investigated using high-throughput sequencing of bacterial 16S rDNA genes and fungal internal transcribed spacer sequences. According to our results, 1) soil dissolved organic carbon (DOC) significantly decreased after HN addition, and available nitrogen (AN) significantly declined after LN addition, 2) bacterial α-diversity in the subsoil significantly decreased with HN addition, which was affected significantly by the interaction between N addition and soil layer, and 3) soil DOC, rather than pH, was the dominant environmental factor influencing soil bacterial community composition, while AN and MBN were the best predictors of soil fungal community structure dynamics. Moreover, N addition influence both diversity and community composition of soil bacteria more than those of fungi in the subtropical forests. The results of the present study provide further evidence to support shifts in soil microbial community structure in acidic subtropical forests in response to increasing N deposition.


el–Hayah ◽  
2012 ◽  
Vol 1 (4) ◽  
Author(s):  
Prihastuti Prihastuti

<p>Soils are made up of organic and an organic material. The organic soil component contains all the living creatures in the soil and the dead ones in various stages of decomposition.  Biological activity in soil helps to recycle nutrients, decompose organic matter making nutrient available for plant uptake, stabilize humus, and form soil particles.<br />The extent of the diversity of microbial in soil is seen to be critical to the maintenance of soil health and quality, as a wide range of microbial is involved in important soil functions.  That ecologically managed soils have a greater quantity and diversity of soil microbial. The two main drivers of soil microbial community structure, i.e., plant type and soil type, are thought to exert their function in a complex manner. The fact that in some situations the soil and in others the plant type is the key factor determining soil microbial diversity is related to their complexity of the microbial interactions in soil, including interactions between microbial and soil and microbial and plants. <br />The basic premise of organic soil stewardship is that all plant nutrients are present in the soil by maintaining a biologically active soil environment. The diversity of microbial communities has on ecological function and resilience to disturbances in soil ecosystems. Relationships are often observed between the extent of microbial diversity in soil, soil and plant quality and ecosystem sustainability. Agricultural management can be directed toward maximizing the quality of the soil microbial community in terms of disease suppression, if it is possible to shift soil microbial communities.</p><p>Keywords: structure, microbial, implication, sustainable agriculture<br /><br /></p>


Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 285 ◽  
Author(s):  
Mengxin Zhao ◽  
Jing Cong ◽  
Jingmin Cheng ◽  
Qi Qi ◽  
Yuyu Sheng ◽  
...  

Subtropical and tropical broadleaf forests play important roles in conserving biodiversity and regulating global carbon cycle. Nonetheless, knowledge about soil microbial diversity, community composition, turnover and microbial functional structure in sub- and tropical broadleaf forests is scarce. In this study, high-throughput sequencing was used to profile soil microbial community composition, and a micro-array GeoChip 5.0 was used to profile microbial functional gene distribution in four sub- and tropical broadleaf forests (HS, MES, HP and JFL) in southern China. The results showed that soil microbial community compositions differed dramatically among all of four forests. Soil microbial diversities in JFL were the lowest (5.81–5.99) and significantly different from those in the other three forests (6.22–6.39). Furthermore, microbial functional gene interactions were the most complex and closest, likely in reflection to stress associated with the lowest nitrogen and phosphorus contents in JFL. In support of the importance of environmental selection, we found selection (78–96%) dominated microbial community assembly, which was verified by partial Mantel tests showing significant correlations between soil phosphorus and nitrogen content and microbial community composition. Taken together, these results indicate that nitrogen and phosphorus are pivotal in shaping soil microbial communities in sub- and tropical broadleaf forests in southern China. Changes in soil nitrogen and phosphorus, in response to plant growth and decomposition, will therefore have significant changes in both microbial community assembly and interaction.


1999 ◽  
Vol 89 (10) ◽  
pp. 920-927 ◽  
Author(s):  
Mark Mazzola

Changes in the composition of soil microbial communities and relative disease-suppressive ability of resident microflora in response to apple cultivation were assessed in orchard soils from a site possessing trees established for 1 to 5 years. The fungal community from roots of apple seedlings grown in noncultivated orchard soil was dominated by isolates from genera commonly considered saprophytic. Plant-pathogenic fungi in the genera Phytophthora, Pythium, and Rhizoctonia constituted an increasing proportion of the fungal community isolated from seedling roots with increasing orchard block age. Bacillus megaterium and Burkholderia cepacia dominated the bacterial communities recovered from noncultivated soil and the rhizosphere of apple seedlings grown in orchard soil, respectively. Populations of the two bacteria in their respective habitats declined dramatically with increasing orchard block age. Lesion nematode populations did not differ among soil and root samples from orchard blocks of different ages. Similar changes in microbial communities were observed in response to planting noncultivated orchard soil to five successive cycles of ‘Gala’ apple seedlings. Pasteurization of soil had no effect on apple growth in noncultivated soil but significantly enhanced apple growth in third-year orchard block soil. Seedlings grown in pasteurized soil from the third-year orchard block were equal in size to those grown in noncultivated soil, demonstrating that suppression of plant growth resulted from changes in the composition of the soil microbial community. Rhizoctonia solani anastomosis group 5 (AG 5) had no effect on growth of apple trees in noncultivated soil but significantly reduced the growth of apple trees in soil from third-year orchard soil. Changes in the ability of the resident soil microflora to suppress R. solani AG 5 were associated with reductions in the relative populations of Burkholderia cepacia and Pseudomonas putida in the rhizosphere of apple.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6746 ◽  
Author(s):  
Pengyu Zhao ◽  
Jiabing Bao ◽  
Xue Wang ◽  
Yi Liu ◽  
Cui Li ◽  
...  

Microbial community assembly is influenced by a continuum (actually the trade-off) between deterministic and stochastic processes. An understanding of this ecological continuum is of great significance for drawing inferences about the effects of community assembly processes on microbial community structure and function. Here, we investigated the driving forces of soil microbial community assembly in three different environmental contexts located on subalpine coniferous forests of the Loess Plateau in Shanxi, China. The variation in null deviations and phylogenetic analysis showed that a continuum existed between deterministic and stochastic processes in shaping the microbial community structure, but deterministic processes prevailed. By integrating the results of redundancy analysis (RDA), multiple regression tree (MRT) analysis and correlation analysis, we found that soil organic carbon (SOC) was the main driver of the community structure and diversity patterns. In addition, we also found that SOC had a great influence on the community assembly processes. In conclusion, our results show that deterministic processes always dominated assembly processes in shaping bacterial community structure along the three habitat contexts.


2018 ◽  
Author(s):  
Pengyu Zhao ◽  
Jiabing Bao ◽  
Xue Wang ◽  
Yi Liu ◽  
Cui Li ◽  
...  

The mechanisms underlying community dynamics, which govern the complicated biogeographical patterns of microbes, have long been a research hotspot in community ecology. However, the mixing of multiple ecological processes and the one-sidedness of analytical methods make it difficult to draw inferences about the community assembly mechanisms. In this study, we investigated the driving forces of the soil microbial community in subalpine coniferous forests of the Loess Plateau in Shanxi, China, by integrating multiple analytical methods. The results of the null model demonstrated that deterministic processes (especially interspecific relationships) were the main driving force of the soil microbial community assembly in this study area, relative to stochastic processes. Based on the results of the net relatedness index (NRI) and nearest taxon index (NTI), we inferred that historical and evolutionary factors, such as climate change and local diversification, may have similar effects on microbial community structure based on the climatic niche conservatism. Based on the results of a functional traits analysis, we found that the effects of ongoing ecological processes on the microbial community assembly varied among sites. Therefore, the functional structures seemed to be more related to ongoing ecological processes, whereas the phylogenetic structures seemed to be more related to historical and evolutionary factors, as well as the tradeoff between deterministic and stochastic processes. The functional and phylogenetic structures were mainly shaped by different ecological processes. By integrating multiple ecological processes, our results provide more details of the mechanisms driving the community assembly


2020 ◽  
Author(s):  
Ruth Schmidt ◽  
Xiao-Bo Wang ◽  
Paolina Garbeva ◽  
Étienne Yergeau

AbstractNitrapyrin is one of the most common nitrification inhibitors that are used to retain N in the ammonia form in soil to improve crop yields and quality. Whereas the inhibitory effect of nitrapyrin is supposedly specific to ammonia oxidizers, in view of the keystone role of this group in soils, nitrapyrin could have far-reaching impacts. Here, we tested the hypothesis that nitrapyrin leads to large shifts in soil microbial community structure, composition, diversity and functions, beyond its effect on ammonia-oxidizers. To test this hypothesis, we set-up a field experiment where wheat (Triticum aestivum cv. AC Walton) was fertilized with ammonium nitrate (NH4NO3) and supplemented or not with nitrapyrin. Rhizosphere and bulk soils were sampled twice, DNA was extracted, the 16S rRNA gene and ITS region were amplified and sequenced to follow shifts in archaeal, bacterial and fungal community structure, composition and diversity. To assess microbial functions, several genes involved in the nitrogen cycle were quantified by real-time qPCR and volatile organic compounds (VOCs) were trapped in the rhizosphere at the moment of sampling. As expected, sampling date and plant compartment had overwhelming effects on the microbial communities. However, within these strong effects, we found statistically significant effects of nitrapyrin on the relative abundance of Thaumarchaeota, Proteobacteria, Nitrospirae and Basidiomycota, and on several genera. Nitrapyrin also significantly affected bacterial and fungal community structure, and the abundance of all the N-cycle gene tested, but always in interaction with sampling date. In contrast, nitrapyrin had no significant effect on the emission of VOCs, where only sampling date significantly influenced the profiles observed. Our results point out far-reaching effects of nitrapyrin on soil and plant associated microbial communities, well beyond its predicted direct effect on ammonia-oxidizers. In the longer term, these shifts might counteract the positive effect of nitrapyrin on crop nutrition and greenhouse gas emissions.


2021 ◽  
Vol 13 (21) ◽  
pp. 11684
Author(s):  
Li Fan ◽  
Weiping Zhao ◽  
Wendan Feng ◽  
Ping Mo ◽  
Yunlin Zhao ◽  
...  

Soil microorganisms play an important role in regulating a variety of ecological functions. In recent years, the research on ecological restoration after mining has made people more aware of the importance of microbial diversity to ecosystem restoration. The present study investigated the effect of ecological restoration on microbial community structure and its relationship with soil physicochemical properties in the Dabaoshan mining area, China. High throughput sequencing technology was used to analyze and compare the microbial community composition of three types of soil (undamaged area, unrestoration area, and ecological restoration area). The contents of organic carbon, total nitrogen, and total phosphorus were 2.38–12.97 g/kg, 0.39–1.62 g/kg, and 0.99–1.51 g/kg, respectively. In different soil states, undamaged area and ecological restoration area were significantly higher than those in unrestoration area. The results showed that the structure of soil microbial community was significantly correlated with soil physicochemical properties, and formations in the repaired and unrepaired soils were different. Operational Taxonomic Unit (OTU) cluster analysis and diversity index analysis showed that soil microbial community changed at phylum and genus levels. The results showed that at the phylum level, all soil samples contained Firmicutes, Proteobacteria, and actinobacteria. Firmicutes and Proteobacteria of the ecological restoration area (ER1, ER2) were the highest in relative abundance compared with other samples, accounting for more than 45%. Proteobacteria and Acidobacteria were the dominant phylum in the undamaged area (UD), accounting for 32.7% and 22.3%, respectively. It can be seen that soil restoration produced a new dominant population, and Proteobacteria showed an absolute competitive advantage in the mining soil.


Sign in / Sign up

Export Citation Format

Share Document