scholarly journals Additive Manufacturing of Anisotropic Sm-Fe-N Nylon Bonded Permanent Magnets

Author(s):  
Kinjal Gandha ◽  
Mariappan Paranthaman ◽  
Brian Sales ◽  
Haobo Wang ◽  
Adrian Dalagan ◽  
...  

Fabricating a bonded magnet with a near-net shape in suitable thermoplastic polymer binders is of paramount importance in the development of cost-effective energy technologies. In this work, anisotropic Sm2Fe17N3 (Sm-Fe-N) bonded magnets are additively printed using Sm-Fe-N anisotropic magnetic particles in a polymeric binder polyamide-12 (PA12). The anisotropic bonded permanent magnets are fabricated by Big Area Additive Manufacturing followed by post-aligned in a magnetic field. Optimal post-alignment results in an enhanced remanence of ~ 0.68 T in PA12 reflected in a parallel-oriented (aligned) measured direction. The maximum energy product achieved for the additively printed anisotropic bonded magnet of Sm-Fe-N in PA12 polymer is 78.8 KJ m-3. Our results show advanced processing flexibility of additive manufacturing for the development of Sm-Fe-N bonded magnets in polymer media designed for applications with no critical rare earth magnets.

2021 ◽  
Vol 58 (10) ◽  
pp. 630-643
Author(s):  
F. Trauter ◽  
J. Schanz ◽  
H. Riegel ◽  
T. Bernthaler ◽  
D. Goll ◽  
...  

Abstract Fe-Nd-B powders were processed by additive manufacturing using laboratory scale selective laser melting to produce bulk nanocrystalline permanent magnets. The manufacturing process was carried out in a specially developed process chamber under Ar atmosphere. This resulted in novel types of microstructures with micrometer scale clusters of nanocrystalline hard magnetic grains. Owing to this microstructure, a maximum coercive field strength (coercivity) μ0Hc of 1.16 T, a remanence Jr of 0.58 T, and a maximum energy product (BH)max of 62.3 kJ/mm3could, for example, be obtained for the composition Nd16.5-Pr1.5-Zr2.6-Ti2.5-Co2.2-Fe65.9-B8.8.


1999 ◽  
Vol 5 (S2) ◽  
pp. 26-27
Author(s):  
Kannan M. Krishnan ◽  
Er. Girt ◽  
E. C. Nelson ◽  
G. Thomas ◽  
Ferdinand Hofer

Performance of permanent magnets for a variety of applications is often determined by the maximum energy product (BH)max. In order to obtain high (BH)max permanent magnetic materials have to have large coercivity. In theory the coercive field of ideally oriented, non-interacting, single domain, magnetic particles, assuming Kl is much bigger than K2, was shown to be He = 2K1/Ms - N Ms, where Kl and K2 are the magnetocrystalline anisotropy constants, Ms is the spontaneous magnetization and N is the demagnetization factor. For randomly oriented non-interacting particles the Stoner-Wohlfarth model predicts that the value of Hc decreases to about half. However, experimentally obtained values of the coercitive fields in permanent magnets are 3 to 10 and 2 times smaller for well oriented and randomly oriented samples, respectively. This discrepancy was attributed to inter-particle interaction and the microstructure of the permanent magnets. In order to understand the difference between the theoretically predicted and experimentally obtained results for He we prepared rapidly quenched, Nd-rich, NdxFe14B (2 < x < 150) ribbons.


Author(s):  
Raja K. Mishra

The discovery of a new class of permanent magnets based on Nd2Fe14B phase in the last decade has led to intense research and development efforts aimed at commercial exploitation of the new alloy. The material can be prepared either by rapid solidification or by powder metallurgy techniques and the resulting microstructures are very different. This paper details the microstructure of Nd-Fe-B magnets produced by melt-spinning.In melt spinning, quench rate can be varied easily by changing the rate of rotation of the quench wheel. There is an optimum quench rate when the material shows maximum magnetic hardening. For faster or slower quench rates, both coercivity and maximum energy product of the material fall off. These results can be directly related to the changes in the microstructure of the melt-spun ribbon as a function of quench rate. Figure 1 shows the microstructure of (a) an overquenched and (b) an optimally quenched ribbon. In Fig. 1(a), the material is nearly amorphous, with small nuclei of Nd2Fe14B grains visible and in Fig. 1(b) the microstructure consists of equiaxed Nd2Fe14B grains surrounded by a thin noncrystalline Nd-rich phase. Fig. 1(c) shows an annular dark field image of the intergranular phase. Nd enrichment in this phase is shown in the EDX spectra in Fig. 2.


2008 ◽  
Vol 591-593 ◽  
pp. 114-119 ◽  
Author(s):  
E.A. Périgo ◽  
E.P. Soares ◽  
Hidetoshi Takiishi ◽  
C.C. Motta ◽  
Rubens Nunes de Faria Jr.

Roller-ball milling (RBM) or planetary ball milling (PBM) have been used together with the hydrogen decrepitation (HD) process to produce sintered permanent magnets based on a mixture of Pr16Fe76B8 and Pr14.00Fe63.90Co16.00B6.00Nb0.10 magnetic alloys. Five distinct compositions have been studied comparing low- and high-energy milling. Magnets with a particular composition and prepared using these two routes exhibited similar magnetic properties. Modifications have been carried out in the procedure of the HD stage for PBM in order to guarantee a high degree of crystallographic alignment. Pr15.00Fe69.95Co8.00B7.00Nb0.05 magnets showed the best maximum energy product for both processing routes (~ 247 kJm-3). A significant reduction in the milling time (93%) has been achieved with high-energy processing, the greatest advantage over the low-energy route.


2011 ◽  
Vol 672 ◽  
pp. 229-232
Author(s):  
Marian Grigoraş ◽  
M. Lostun ◽  
Nicoleta Lupu ◽  
Horia Chiriac

Nanocomposite NdFeB/αFe magnets were obtained by spark plasma sintering technique using high energy ball-milled Nd-Fe-B melt-spun ribbons mixed in different weight ratios with Fe commercial powders. The remanence of SPS nanocomposite magnets increases with the Fe powders content from 6.1 for 4 wt.% Fe to 6.4 kG for 5 wt.% Fe, while the estimated maximum energy product is also increased from 9.0 to 10.6 MGOe.


2018 ◽  
Vol 930 ◽  
pp. 445-448
Author(s):  
R.G.T. Fim ◽  
M.R.M. Silva ◽  
S.C. Silva ◽  
Julio Cesar Serafim Casini ◽  
P.A.P. Wendhausen ◽  
...  

In this paper, the effect of the grain size on sintered Nd-Fe-B based permanent magnets was investigated. In order, the magnets were produced by different milling times at 200 rpm and then vacuum sintered at 1373 K for 60 minutes followed by cooling outside the furnace. The magnets either produced by lower and higher milling times (30 and 75 minutes) exhibited lower remanence and coercivity, due the inhomogeneous distribution of the grain sizes. The magnet produced by intermediary milling time (45 minutes) exhibited the highest properties among all samples, with remanence of 1.06 T, coercivity of 891.3 KA.m-1, maximum energy product of 211 KJ.m3and a squareness factor equal 0.92.


2010 ◽  
Vol 638-642 ◽  
pp. 1749-1754
Author(s):  
X.F. Wang ◽  
X.Y. Chen ◽  
Z.L. Jiang ◽  
Y. Chen ◽  
H.M. Chen

Nd2Fe14B/-Fe nanocomposite permanent magnet contains the hard and soft magnetic phases, Nd2Fe14B and -Fe respectively. An exchange coupling effect exists between the two magnetic phases. The effect of alloying element Nb on its nanostructure and properties have been studied. Adding Nb to the alloy is effective to refine grains, a relatively small grain size causes a high intrinsic coercivity, remanence and therefore a high maximum energy product, (BH)max. MFM (Magnetic Force Microscope) was used to observe the magnetic micro-domain structure in the nanophase alloys. The length of the magnetic contrast shows a significant dependence on the microstructure and phase constitution, and the longer length is correspond with the larger exchange coupling effect between the soft and hard magnetic phases.


1983 ◽  
Vol 56 (2) ◽  
pp. 322-326 ◽  
Author(s):  
Petra Štefcová ◽  
Miroslav Schatz

Abstract The method of preparation of elastic permanent magnets of silicone rubber is described, and the values of the basic magnetic properties of these rubbers, i.e., the coercive force, the remanent induction, and the maximum energy product, are given.


2019 ◽  
pp. 089270571988689
Author(s):  
Thiago Felipe Vieira Silva ◽  
Marcelo Henrique Stoppa

Additive manufacturing has been gaining ground both in the industry and in the academic world due to its flexibility, easy operation, and the possibility of making products in the most varied formats. Also, it can be observed that magnets are largely produced using a sintering process, although it results in high (BH)max, this process is very limited in relation to the shapes of the magnets, thus, additive manufacturing can be used to produce complex shaped magnets. The aim of this article is to demonstrate the state of the art regarding the applied methods to produce permanent magnets and materials for magnet production. Considering this, a literature review was conducted using the methodology called mapping study to select the articles to be used, thus, demonstrating that the main compound used as the magnetic particle is NdFeB alloy powder. Finally, it can be concluded that the magnets produced by additive manufacturing have lower (BH)max than those produced by sintering processes, which despite having high filling capacity of magnetic particles increases the magnet’s magnetic capacity, limits their shape, those by manufacturing magnets can be produced with complex shapes, the heating temperature may reduce the maximum energy, and the coercive force improves it.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Lanping Yue ◽  
Yunlong Jin ◽  
Wenyong Zhang ◽  
David J. Sellmyer

The addition of Molybdenum was used to modify the nanostructure and enhance coercivity of rare-earth-free Zr2Co11-based nanocrystalline permanent magnets. The effect of Mo addition on magnetic domain structures of melt spun nanocrystalline Zr16Co84-xMox(x=0, 0.5, 1, 1.5, and 2.0) ribbons has been investigated. It was found that magnetic properties and local domain structures are strongly influenced by Mo doping. The coercivity of the samples increases with the increase in Mo content (x≤1.5). The maximum energy product(BH)maxincreases with increasingxfrom 0.5 MGOe forx=0to a maximum value of 4.2 MGOe forx=1.5. The smallest domain size with a relatively short magnetic correlation length of 128 nm and largest root-mean-square phase shiftΦrmsvalue of 0.66° are observed for thex=1.5. The optimal Mo addition promotes magnetic domain structure refinement and thus leads to a significant increase in coercivity and energy product in this sample.


Sign in / Sign up

Export Citation Format

Share Document