scholarly journals Recent Advancements in Emerging Neuromorphic Device Technologies     

Author(s):  
Jiyong Woo ◽  
Heebum Kang ◽  
Hyun Wook Kim ◽  
Eun Ryeong Hong

The explosive growth of data and information has motivated technological developments in computing systems that utilize them for efficiently discovering patterns and gaining relevant insights. Inspired by the structure and functions of biological synapses and neurons in the brain, neural network algorithms that can realize highly parallel computations have been implemented on conventional silicon transistor-based hardware. However, synapses composed of multiple transistors allow only binary information to be stored, and processing such digital states through complicated silicon neuron circuits makes low-power and low-latency computing difficult. Therefore, the attractiveness of the emerging memories and switches for synaptic and neuronal elements, respectively, in implementing neuromorphic systems, which are suitable for performing energy-efficient cognitive functions and recognition, is discussed herein. Based on a literature survey, recent progress concerning memories shows that novel strategies related to materials and device engineering to mitigate challenges are presented to primarily achieve nonvolatile analog synaptic characteristics. Attempts to emulate the role of the neuron in various ways using compact switches and volatile memories are also discussed. It is hoped that this review will help direct future interdisciplinary research on device, circuit, and architecture levels of neuromorphic systems. Corresponding author(s) Email:   [email protected]  

2020 ◽  
Vol 6 (4) ◽  
pp. 251-258
Author(s):  
Leila Alidoust ◽  
◽  
Adele Jafari ◽  

Neurodegeneration is a progressive and irreversible loss of neuronal cells in specific regions of the brain. Alzheimer Diseases (AD) Parkinson Disease (PD) are the most common forms of neurodegenerative diseases in older people. Exosomes are extracellular nanovesicles that have a key role in physiological processes such as intercellular communication, cell migration, angiogenesis, and anti-tumor immunity. Mounting evidence indicates the role of exosomes in neurodegenerative disorders as possible carriers of disease particles. They have several different potential applications thanks to their unique structure and functions. The present review summarizes recent studies on exosome potentials as a biomarker and therapeutic tool in neurodegenerative diseases. It also provides an overview of the structure and function of exosomes.


1993 ◽  
Vol 16 (2) ◽  
pp. 153-169 ◽  
Author(s):  
Hans-Jürgen Eikmeyer ◽  
Ulrich Schade

As a result of present-day technological standards, the technique of computer simulation is constantly gaining influence in cognitive science. Neurolinguistics is a special branch of this field in which cognitive capacities connected with language are related to the structure and functions of the brain. It is argued that computer simulation is a useful technique for evaluating neurolinguistic models. This is demonstrated with respect to neural network models of the process of language production.


Author(s):  
J.E. Johnson

Although neuroaxonal dystrophy (NAD) has been examined by light and electron microscopy for years, the nature of the components in the dystrophic axons is not well understood. The present report examines nucleus gracilis and cuneatus (the dorsal column nuclei) in the brain stem of aging mice.Mice (C57BL/6J) were sacrificed by aldehyde perfusion at ages ranging from 3 months to 23 months. Several brain areas and parts of other organs were processed for electron microscopy.At 3 months of age, very little evidence of NAD can be discerned by light microscopy. At the EM level, a few axons are found to contain dystrophic material. By 23 months of age, the entire nucleus gracilis is filled with dystrophic axons. Much less NAD is seen in nucleus cuneatus by comparison. The most recurrent pattern of NAD is an enlarged profile, in the center of which is a mass of reticulated material (reticulated portion; or RP).


2019 ◽  
Vol 3 (6) ◽  
pp. 707-711 ◽  
Author(s):  
Andrew Peterson ◽  
Adrian M. Owen

In recent years, rapid technological developments in the field of neuroimaging have provided several new methods for revealing thoughts, actions and intentions based solely on the pattern of activity that is observed in the brain. In specialized centres, these methods are now being employed routinely to assess residual cognition, detect consciousness and even communicate with some behaviorally non-responsive patients who clinically appear to be comatose or in a vegetative state. In this article, we consider some of the ethical issues raised by these developments and the profound implications they have for clinical care, diagnosis, prognosis and medical-legal decision-making after severe brain injury.


1969 ◽  
Vol 21 (02) ◽  
pp. 294-303 ◽  
Author(s):  
H Mihara ◽  
T Fujii ◽  
S Okamoto

SummaryBlood was injected into the brains of dogs to produce artificial haematomas, and paraffin injected to produce intracerebral paraffin masses. Cerebrospinal fluid (CSF) and peripheral blood samples were withdrawn at regular intervals and their fibrinolytic activities estimated by the fibrin plate method. Trans-form aminomethylcyclohexane-carboxylic acid (t-AMCHA) was administered to some individuals. Genera] relationships were found between changes in CSF fibrinolytic activity, area of tissue damage and survival time. t-AMCHA was clearly beneficial to those animals given a programme of administration. Tissue activator was extracted from the brain tissue after death or sacrifice for haematoma examination. The possible role of tissue activator in relation to haematoma development, and clinical implications of the results, are discussed.


2009 ◽  
Vol 150 (46) ◽  
pp. 2101-2109 ◽  
Author(s):  
Péter Csécsei ◽  
Anita Trauninger ◽  
Sámuel Komoly ◽  
Zsolt Illés

The identification of autoantibodies generated against the brain isoform water channel aquaporin4 in the sera of patients, changed the current diagnostic guidelines and concept of neuromyelitis optica (NMO). In a number of cases, clinical manifestation is spatially limited to myelitis or relapsing optic neuritis creating a diverse. NMO spectrum. Since prevention of relapses provides the only possibility to reduce permanent disability, early diagnosis and treatment is mandatory. In the present study, we discuss the potential role of neuroimaging and laboratory tests in differentiating the NMO spectrum from other diseases, as well as the diagnostic procedures and therapeutic options. We also present clinical cases, to provide examples of different clinical settings, diagnostic procedures and therapeutic decisions.


MIS Quarterly ◽  
2013 ◽  
Vol 37 (4) ◽  
pp. 1313-1332 ◽  
Author(s):  
Claire-Michelle Loock ◽  
◽  
Thorsten Staake ◽  
Frédéric Thiesse ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document