scholarly journals The distribution and availability of phosphorus fractions in restored cut slopes soil aggregates along altitude gradient

Author(s):  
Mengke Zhu ◽  
Bocong Huang ◽  
Zongyang Liu ◽  
yue Wang ◽  
jiao Teng ◽  
...  

The distribution and availability of phosphorus (P) fractions in restored cut slope soil aggregates along altitude gradients were studied. We examined soil aggregates total phosphorus (TP), available phosphorus (AP) and phosphorus activation coefficient (PAC), and discovered that there was no significant difference in TP at four altitudes (p> 0.05), but there was a significant difference in AP at 3009 m, 3347 m and 3980 m (p< 0.05). At 3009 m, 3347 m and 3654 m, the AP accumulation in small size aggregates were more advantageous. Overall, PAC dropped steadily as aggregate size increased, as shown by PAC (3654 m)> PAC (3347 m)> PAC (3009 m)> PAC (3980 m) in altitudes. In all particle size soil aggregates, total inorganic phosphorus (TPi) > total organic phosphorus (TPo) > residual phosphorus (R-P) at 3009 m, 3347 m and 3654 m; TPo> TPi> R-P at 3980 m. Through correlation and multiple stepwise regression analysis, we concluded that active NaHCO3-Pi was the main AP source. It was suggested that more attention should be paid to the ratio of small particle size aggregates, so as to increase soil AP storage. At low (3009 m) and high altitude (3980 m), inorganic P fertilizer and P activator were added into soil to improve the activation ability of soil P and the AP supply, so as to promote the healthy development of slope soils ecosystem.

2017 ◽  
Vol 75 (10) ◽  
pp. 2291-2298 ◽  
Author(s):  
Cui Lijuan ◽  
Li Wei ◽  
Zhou Jian ◽  
Zhang Yan ◽  
Zhang Manyin ◽  
...  

Substrate adsorption is one of the main processes by which redundant phosphorus is removed from wastewater in surface flow constructed wetlands (SFCWs). The physical properties of the substrate, such as depth and particle size, will influence the amount of phosphorus adsorption. This study was carried out in a long-running intermittent inflow constructed wetland that covered a total area of 940.4 m2 in the Shunyi District of Beijing, China. We investigated how the concentrations of four phosphorus fractions, namely calcium phosphate (CaP), iron phosphate (FeP), adsorbed phosphorus (AdsP), and organic phosphorus (OP), varied between the surface (0–10 cm) and subsurface (10–20 cm) substrate and among the different substrate particle sizes. The total phosphorus concentrations in the substrate ranged from 154.97 to 194.69 mg/kg; CaP accounted for more than 80% of the total phosphorus content. The concentrations of OP were significantly higher in the surface layer than in the subsurface layer, but the concentrations of inorganic phosphorus were not significantly different between the two layers. The CaP, AdsP, and OP adsorption capacities were greater for small-sized substrate particles than for large-sized substrate particles. The results from this study provide a theoretical basis for the construction of constructed wetlands.


2012 ◽  
Vol 518-523 ◽  
pp. 4801-4805
Author(s):  
Li Xin Chen ◽  
Wen Biao Duan

Variation in total phosphorus (TP), available phosphorus (AP), the forms of organic phosphorus (OP) and inorganic phosphorus (IP) in rhizosphere soil (RS) and non-rhizosphere soil (NRS) at different development stages in larch (Larix olgensis) plantations was quantitively studied through field investigation, chemical analysis and statistical test. The results indicated that: AP, O-P (occluded phosphate), TP, OP in RS exhibited a significantly or apparently decreased tendency over stand age, but IP, Ca-P (phosphate combined with calcium) and Fe-P (phosphate combined with Ferrum) in RS presented a significantly or apparently increased trend when stand age increased; Ca-P in NRS increased when stand age became larger; Fe-P in half-mature stand (HMS), AP and Fe-P in near mature stand (NMS), AP and Ca-P in mature stand (MS) in NRS was higher than in RS


2009 ◽  
Vol 60 (7) ◽  
pp. 653 ◽  
Author(s):  
W. H. Blake ◽  
P. J. Wallbrink ◽  
I. G. Droppo

Off-site transfer of nutrient-rich burnt soil has implications for downstream water quality. Coarsening of effective particle size (EPS) distributions in burnt material via aggregation of fines into composite particles modifies post-fire sediment and nutrient transport dynamics. Experiments were undertaken to establish temperature controls on wildfire-enhanced soil aggregation. Burnt and unburnt soil from a temperate eucalypt forest were analysed for EPS and settling velocity using a LISST-ST (Laser In Situ Scatter and Transmissometry with Settling Tube) particle size analyser. Next, samples were burnt (250–550°C) before further analysis with the LISST-ST. Settling velocities of naturally burnt soil aggregates were greater than unburnt aggregates of the same EPS. Experimental burning indicated that dense water-stable aggregates form at relatively low temperatures (250°C) probably due to distillation and carbonisation, through pyrolysis, of organic volatiles in surface litter. Under these conditions, the EPS distribution of burnt surface soil coarsens with up to 50% of the <63-μm fraction becoming aggregated. A positive relationship between ‘plant-available’ phosphorus and burn temperature was observed. Given that a large proportion of soil particulate phosphorus is associated with the <63-μm fraction, fire-related aggregation processes have potentially important implications for post-fire fine sediment and nutrient transport and storage dynamics.


2021 ◽  
Author(s):  
Dongrui Di ◽  
Guangwei Huang

Abstract Backgrounds A multitude of studies have applied different methods to study the dynamics of soil organic carbon (SOC), but the differential impact of artificial and natural afforestation on SOC dynamic are still poorly understood. Methods and aims We investigated the SOC dynamics following artificial and natural afforestation in Loess Plateau of China, characterizing soil structure and stoichiometry using stable isotope carbon and radiocarbon models. We aim to compare SOC dynamics, clarify SOC source under different afforestation, examine comparability of the study areas and find how soil aggregate size classes control SOC dynamics, finally to evaluate effect of reforestation project.Results The 0-10cm and 10-20 cm SOC stocks were significant higher than other two land-use system. At other depths, there is no significant difference among the three land-use system. Total top soil SOC stocks, C:N and C:P of differently sized soil aggregates significantly increased following afforestation. 13C results and Radiocarbon models indicated that the SOC decomposition rate and new SOC input rate were lower under natural afforestation than artificial afforestation. Conclusions Afforestation can accumulate SOC in top soils mainly resulting from in topsoil changing. SOC resource is mainly from macroaggregate formation provided by fresh plant residues. SOC loss from soil respiration was derived from microaggregates during afforestation. The“space-for-time substitution” method is suitable for comparability of the study areas.


2018 ◽  
Vol 64 (No. 5) ◽  
pp. 214-220 ◽  
Author(s):  
Sun Benhua ◽  
Cui Quanhong ◽  
Guo Yun ◽  
Yang Xueyun ◽  
Zhang Shulan ◽  
...  

Temporal changes in the concentrations of plant-available phosphorus (P) in soil (Olsen-P), total soil-P and P activation coefficient (the ratio of Olsen-P to residual-P (i.e. an approximation to total-P)) were measured in plots that received consistent inorganic nitrogen, phosphorus and potassium plus organic fertilizers annually. Maize and winter wheat crops were grown in rotation for 24 years. Olsen-P and P activation coefficient declined significantly in the earlier years (&lt; 12 years) for treatments that did not include any P fertilizer, and increased over the same period for the P-fertilized treatments. The rates of change in the Olsen-P and P activation coefficient values were positively related to P balance. In the later years, the Olsen-P and P activation coefficient plateau values were positively related to the P balance.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Huck Ywih Ch’ng ◽  
Osumanu Haruna Ahmed ◽  
Nik Muhamad Ab. Majid

In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments.


1995 ◽  
Vol 75 (3) ◽  
pp. 311-318 ◽  
Author(s):  
John E. Richards ◽  
Thomas E. Bates ◽  
S. C. Sheppard

Long-term fertilizer-P application affects soil-P distribution and forms. These effects must be characterized to use fertilizer P most efficiently. In three southern Ontario soils of varying texture, we determined changes in soil organic P (Po) and inorganic P (Pi) caused by fertilizer P application (0–90 kg broadcast P ha−1 yr−1 during 10 yr of corn production. Soil P was characterized by (1) annual measurement of 0.5 M NaHCO3-extractable P (Olsen-P) and (2) sequential extraction from soil taken at the beginning of the experiment and after receiving 0 to 90 kg broadcast P ha−1 yr−1 for 10 yr. Fertilizer P increased Olsen-P concentrations in all soils. The increases were proportional to the cumulative amount of P applied. Based on all three soils, 16 kg P ha−1 was required to increase Olsen-P concentrations by 1 mg L−1 soil. After 10 yr of 90 kg broadcast P ha−1 yr−1, labile Pi fractions (resin P and NaHCO3 P) were increased, as was NaOH-extractable Pi in all soils. On the most P-deficient soil (Conestogo SiL), where corn grain yields were increased by fertilizer P, P fertilization also increased HCl-Pi, residual P (H2O2-H2SO4 extractable P) and labile Po (NaHCO3-Po and NaOH-Po). A P balance was calculated, which accounted for additions to, removals from, and changes in the total P status of the 0–20 cm layer. When no broadcast P was applied, there was an unaccounted-for input (possibly from the subsoil), of 20.9 kg P ha−1 yr−1 on the Conestogo SiL. When 90 kg broadcast P ha−1 yr−1 was applied to the Fox SL, the coarsest soil studied, there was a deficit of 30.9 kg P ha−1 yr−1 and elevated Olsen-P concentrations in the 25–36 cm depth, suggesting downward movement on fertilizer P. It appears that subsoil P was involved in the P cycle of these two soils. Key words: Continuous corn, P fertilization, sequential extraction, organic phosphorus, inorganic phosphorus, labile phosphorus, subsoil P, leaching


Author(s):  
Soheila Karimi Lotfabad ◽  
Murray R Gray

Transport processes in the soil matrix can control the rates of bioremediation of low-solubility contaminants. In this study, experiments were designed to test the hypothesis that diffusion of contaminants within soil aggregates of diameter 40 - 1000 micron was the limiting factor in bioremediation of creosote-contaminated soil. The concentrations of 6 different PAHs (acenaphthene, anthracene, chrysene, fluoranthene, phenanthrene, and pyrene) were monitored during the course of bioremediation of sonicated and non-sonicated soil by an active mixed culture in slurry bioreactors. Sonication of the soil to disperse soil aggregates increased the rate of microbial degradation up to 5 fold, however, there was no significant difference in the final residual concentrations between the two soil treatments. The aggregate size distribution after three weeks of treatment in a slurry bioreactor was comparable in both the sonicated and non-sonicated soils, which was consistent with the independence of the residual concentrations of PAHs on sonication treatment. The soil aggregates were modelled as porous materials, with pores filled with non-aqueous phase liquid and with films of non-aqueous phase liquid on particle surfaces. As the soil aggregates were dispersed, either by sonication or mixing, then the fraction of contaminants in exposed films increased. A diffusion-controlled mass transfer model was developed to represent release of PAHs from the soil, based on this physical model. The estimated diffusion coefficients of four of the PAHs (acenaphthene, phenanthrene, fluoranthene and pyrene ) in the residual creosote phase were in the range 4.4-4.8 x 10-14 cm2/s, while the diffusion coefficients for anthracene and chrysene were lower by a factor of 2. The similar values of diffusion coefficient between the components was consistent with release by diffusion through a viscous residual creosote. The magnitude of the diffusion coefficients was intermediate between the transport properties in high-viscosity oils, and polymers.


2021 ◽  
Vol 11 (10) ◽  
pp. 4427
Author(s):  
Romana Kubínová ◽  
Martin Neumann ◽  
Petr Kavka

In this study, the particle size distribution (PSD) of the soil sediment from topsoil obtained from soil erosion experiments under different conditions was measured. Rainfall simulators were used for rain generation on the soil erosion plots with slopes 22°, 30°, 34° and length 4.25 m. The influence of the external factors (slope and initial state) on the particle and aggregate size distribution were evaluated by laser diffractometer (LD). The aggregate representation percentage in the eroded sediment was also investigated. It has been found that when the erosion processes are intensive (steep slope or long duration of the raining), the eroded sediment contains coarser particles and lower amounts of aggregates. Three methods for the soil particle analyses were tested: (i) conventional–sieving and hydrometer method; (ii) PARIO Soil Particle Analyzer combined with sieving; and (iii) laser diffraction (LD) using Mastersizer 3000. These methods were evaluated in terms of reproducibility of the results, time demands, and usability. It was verified that the LD has significant advantages compared to other two methods, especially the short measurement time for one sample (only 15 min per sample for LD) and the possibility to destroy soil aggregates using ultrasound which is much easier than using hexametaphosphate.


Author(s):  
K.W. Perrott

Changes in phosphorus (P) fractions of unfertilised and fertilised (superphosphate) soil were investigated over five years at a hill country site near Te Kuiti. Only soil inorganic P (Pi) reserves were utilised for plant uptake when superphosphate was withheld at the site. Immobilisation of P as soil organic P (PO) contributed to depletion of the soil Pi reserves during the first two years of this trial. Where superphosphate was applied, immobilisation of P as PO amounted to about 25% of applied P during the five years measurements were made. Changes in soil P fractions indicated that all forms of soil Pi were utilised when superphosphate was withheld. These included readily available Pi, Al- Pi, Fe-Pi, and residual phosphate rock from previous fertiliser applications. Depletion of the phosphate rock residues in the soil also occurred where superphosphate was applied and appears to have been completed within about two years. The phosphate rock residues had probably accumulated because of the relatively high amounts of unacidulated phosphate rock in superphosphate manufactured before 1983. Accumulation of Po associated with humic acid, or adsorbed on surfaces of hy drous oxides of Al and Fe, occurred in both fertilised and unfertilised soils. The more labile forms of PO also increased in the fertilised soil. Keywords inorganic phosphorus, organic phosphorus, phosphorus immobilisation, soil phosphorus, soil phosphorus fractions, soil phosphorus utilisation.


Sign in / Sign up

Export Citation Format

Share Document