scholarly journals LONGITUDINAL AND DAY-TO-DAY VARIATIONS OF EQUATORIAL SPREAD F OCCURRENCE FROM OBSERVATIONS OVER SOUTH AMERICA

2017 ◽  
Vol 35 (1) ◽  
Author(s):  
Ricardo Yvan de La Cruz Cueva ◽  
Cesar E. Valladares ◽  
Eurico Rodrigues de Paula ◽  
Mangalathayil Ali Abdu ◽  
Igo Paulino ◽  
...  

ABSTRACT. In this work we studied the longitudinal and day-to-day variability of equatorial spread F occurrence over South America. Digisonde from the equatorial stations of São Luís and Jicamarca, and Total Electron Content (TEC) data from several GPS receivers were used to analyse the ionospheric conditions conductive to ionospheric plasma irregularity generation during the solar minimum months of September 2009 to January 2010. To support this analysis an Automatic-Bubble- Detection-Algorithm was used to detect abrupt decreases that plasma bubbles introduce in the TEC values. The bubble occurrence pattern over SA observed in this work maximizes on September-October (equinox) in the west and November-January (December solstice) in the east-longitudes. However, on a day-to-day basis bubble signatures are also detected all over SA during this period. Besides being observed during days with pronounced prereversal enhancement (PRE), as expected, the TEC depletions were also observed during days without PRE, during equinox at Jicamarca and December solstice at São Luís. This unexpected occurrence of TEC depletions (TECds) suggests that seeding mechanisms, like periodic structures are present and modify the onset conditions of bubble-events. In this report are shown evidences of wave-like structures previous to bubble development. Keywords: day-to-day variation, equatorial spread F, aeronomy. RESUMO. Neste trabalho estuda-se a variabilidade longitudinal e dia-a-dia da ocorrência do spread F equatorial sobre América do Sul. Digissondas das estações equatoriais de São Luís e Jicamarca, e dados de Conteúdo Eletrônico Total (TEC) de vários receptores GPS foram usados para analisar as condições ionosféricas para a geração de irregularidades de plasma ionosférico durante os meses de mínimo solar de Setembro 2009 a Janeiro 2010. Para dar suporte a esta análise um Algoritmo de Detecção Automática de Bolhas foi usado para detectar decréscimos abruptos nos valores de TEC. O padrão de ocorrência de bolhas sobre SA observado neste trabalho são Setembro-Outubro (equinócio) no leste e Novembro-Janeiro (solstício de Dezembro) nas longitudes leste. Entretanto, na observação dia-a-dia as assinaturas de bolhas são também detectadas sobre toda SA neste período. Além de ter sido observado durante dias com pronunciado pré-reversal enhancement (PRE), como esperado, as depleções TEC foram também observadas durante dias sem PRE, durante equinócio em Jicamarca e solstício de Dezembro em São Luís. Esta ocorrência inesperada de depleções TEC (TECds) sugere que mecanismos geradores, como estruturas períodicas estão presentes e modificam as condições de início de eventos-bolhas. Neste trabalho são apresentados resultados mostrando evidências de estruturas tipo onda prévio ao desenvolvimento de uma bolha. Palavras-chave: variabilidade dia a dia, spread F equatorial, aeronomia.

2008 ◽  
Vol 26 (7) ◽  
pp. 1751-1757 ◽  
Author(s):  
S. V. Thampi ◽  
S. Ravindran ◽  
T. K. Pant ◽  
C. V. Devasia ◽  
R. Sridharan

Abstract. In an earlier study, Thampi et al. (2006) have shown that the strength and asymmetry of Equatorial Ionization Anomaly (EIA), obtained well ahead of the onset time of Equatorial Spread F (ESF) have a definite role on the subsequent ESF activity, and a new "forecast parameter" has been identified for the prediction of ESF. This paper presents the observations of EIA strength and asymmetry from the Indian longitudes during the period from August 2005–March 2007. These observations are made using the line of sight Total Electron Content (TEC) measured by a ground-based beacon receiver located at Trivandrum (8.5° N, 77° E, 0.5° N dip lat) in India. It is seen that the seasonal variability of EIA strength and asymmetry are manifested in the latitudinal gradients obtained using the relative TEC measurements. As a consequence, the "forecast parameter" also displays a definite seasonal pattern. The seasonal variability of the EIA strength and asymmetry, and the "forecast parameter" are discussed in the present paper and a critical value for has been identified for each month/season. The likely "skill factor" of the new parameter is assessed using the data for a total of 122 days, and it is seen that when the estimated value of the "forecast parameter" exceeds the critical value, the ESF is seen to occur on more than 95% of cases.


2021 ◽  
Vol 13 (5) ◽  
pp. 945
Author(s):  
Zhongxin Deng ◽  
Rui Wang ◽  
Yi Liu ◽  
Tong Xu ◽  
Zhuangkai Wang ◽  
...  

In the current study, we investigated the mechanism of medium-scale traveling ionospheric disturbance (MSTID) triggering spread-F in the low latitude ionosphere using ionosonde observation and Global Navigation Satellite System-Total Electron Content (GNSS-TEC) measurement. We use a series of morphological processing techniques applied to ionograms to retrieve the O-wave traces automatically. The maximum entropy method (MEM) was also utilized to obtain the propagation parameters of MSTID. Although it is widely acknowledged that MSTID is normally accompanied by polarization electric fields which can trigger Rayleigh–Taylor (RT) instability and consequently excite spread-F, our statistical analysis of 13 months of MSTID and spread-F occurrence showed that there is an inverse seasonal occurrence rate between MSTID and spread-F. Thus, we assert that only MSTID with certain properties can trigger spread-F occurrence. We also note that the MSTID at night has a high possibility to trigger spread-F. We assume that this tendency is consistent with the fact that the polarization electric field caused by MSTID is generally the main source of post-midnight F-layer instability. Moreover, after thorough investigation over the azimuth, phase speed, main frequency, and wave number over the South America region, we found that the spread-F has a tendency to be triggered by nighttime MSTID, which is generally characterized by larger ΔTEC amplitudes.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Pin-Hsuan Cheng ◽  
Charles Lin ◽  
Yuichi Otsuka ◽  
Hanli Liu ◽  
Panthalingal Krishanunni Rajesh ◽  
...  

AbstractThis study investigates the medium-scale traveling ionospheric disturbances (MSTIDs) statistically at the low-latitude equatorial ionization anomaly (EIA) region in the northern hemisphere. We apply the automatic detection algorithm including the three-dimensional fast Fourier transform (3-D FFT) and support vector machine (SVM) on total electron content (TEC) observations, derived from a network of ground-based global navigation satellite system (GNSS) receivers in Taiwan (14.5° N geomagnetic latitude; 32.5° inclination), to identify MSTID from other waves or irregularity features. The obtained results are analyzed statistically to examine the behavior of low-latitude MSTIDs. Statistical results indicate the following characteristics. First, the southward (equatorward) MSTIDs are observed almost every day during 0800–2100 LT in Spring and Winter. At midnight, southward MSTIDs are more discernible in Summer and majority of them are propagating from Japan to Taiwan. Second, northward (poleward) MSTIDs are more frequently detected during 1200–2100 LT in Spring and Summer with the secondary peak of occurrence between day of year (DOY) 100–140 during 0000–0300 LT. The characteristics of the MSTIDs are interpreted with additional observations from radio occultation (RO) soundings of FORMOSAT-3/COSMIC as well as modeled atmospheric waves from the high-resolution Whole Atmosphere Community Climate Model (WACCM) suggesting that the nighttime MSTIDs in Summer is likely connected to the atmospheric gravity waves (AGWs).


2017 ◽  
Vol 35 (6) ◽  
pp. 1309-1326 ◽  
Author(s):  
Patricia Mara de Siqueira Negreti ◽  
Eurico Rodrigues de Paula ◽  
Claudia Maria Nicoli Candido

Abstract. Total electron content (TEC) is extensively used to monitor the ionospheric behavior under geomagnetically quiet and disturbed conditions. This subject is of greatest importance for space weather applications. Under disturbed conditions the two main sources of electric fields, which are responsible for changes in the plasma drifts and for current perturbations, are the short-lived prompt penetration electric fields (PPEFs) and the longer-lasting ionospheric disturbance dynamo (DD) electric fields. Both mechanisms modulate the TEC around the globe and the equatorial ionization anomaly (EIA) at low latitudes. In this work we computed vertical absolute TEC over the low latitude of South America. The analysis was performed considering HILDCAA (high-intensity, long-duration, continuous auroral electrojet (AE) activity) events and geomagnetic storms. The characteristics of storm-time TEC and HILDCAA-associated TEC will be presented and discussed. For both case studies presented in this work (March and August 2013) the HILDCAA event follows a geomagnetic storm, and then a global scenario of geomagnetic disturbances will be discussed. Solar wind parameters, geomagnetic indices, O ∕ N2 ratios retrieved by GUVI instrument onboard the TIMED satellite and TEC observations will be analyzed and discussed. Data from the RBMC/IBGE (Brazil) and IGS GNSS networks were used to calculate TEC over South America. We show that a HILDCAA event may generate larger TEC differences compared to the TEC observed during the main phase of the precedent geomagnetic storm; thus, a HILDCAA event may be more effective for ionospheric response in comparison to moderate geomagnetic storms, considering the seasonal conditions. During the August HILDCAA event, TEC enhancements from  ∼  25 to 80 % (compared to quiet time) were observed. These enhancements are much higher than the quiet-time variability observed in the ionosphere. We show that ionosphere is quite sensitive to solar wind forcing and considering the events studied here, this was the most important source of ionospheric responses. Furthermore, the most important source of TEC changes were the long-lasting PPEFs observed on August 2013, during the HILDCAA event. The importance of this study relies on the peculiarity of the region analyzed characterized by high declination angle and ionospheric gradients which are responsible for creating a complex response during disturbed periods.


1988 ◽  
Vol 129 ◽  
pp. 551-552
Author(s):  
G. Petit ◽  
J. F. Lestrade ◽  
C. Boucher ◽  
F. Biraud ◽  
A. Rius ◽  
...  

The GRIG-2 geodetic VLBI experiment was conducted in 1985, linking for the first time South America, Europe and Africa. At the single frequency band of 1.66 GHz which was used, the monitoring of the ionosphere is a critical aspect and several predictions of Total Electron Content (TEC) were used. One of them is derived from dual band Doppler observations of TRANSIT satellites, which were simultaneously conducted. The influence of these models on the solution is presented, with comparisons with other VLBI solutions. Decimetric accuracy has been achieved.


Author(s):  
Aghogho Ogwala

Total electron content (TEC) is a parameter of the ionosphere that produces great effect on radio signals. We present the diurnal and seasonal variations of vertical total electron content (vTEC) during the ascending phase of solar cycle 24. A moderate solar activity year (2011) with sunspot number, Rz = 55.7 is used in this study. Total electron content (TEC) deduced from the dual frequency GPS measurements obtained at two ground stations namely: ABUZ (Zaria) with longitude 7.39oE in the north and UNEC (Enugu) with longitude 7.30oE in the south are considered. Both stations are located within the same longitude and has a latitudinal difference of 4.74o in the Nigerian equatorial ionosphere (NEI). Comparison of diurnal and seasonal variations of TEC is carried out for both stations. The diurnal variation of TEC shows a steep increase starting from sunrise, reaching daytime maximum between 13 – 15 LT at UNEC and 14 – 16 LT at ABUZ, then falls to a minimum at sunset. Dawn depression occurred at the same local time of 04 LT at both stations. On a seasonal scale, Pre- and post-midnight values were highest during the Equinoxes, followed by December solstice and least in June Solstice season at ABUZ. Pre- and post-midnight values were also higher during the Equinoxes than the Solstice season at UNEC, although they are about the same range. Also, TEC values are observed to be slightly higher for all hours and seasons at Enugu in the south than Zaria in the north except during March equinox at Zaria where TEC values were higher during the daytime. This implies that there could be little variations in TEC even within the same latitudinal zone.


2004 ◽  
Vol 22 (9) ◽  
pp. 3145-3153 ◽  
Author(s):  
B. W. Reinisch ◽  
M. Abdu ◽  
I. Batista ◽  
G. S. Sales ◽  
G. Khmyrov ◽  
...  

Abstract. Directional ionogram and F-region drift observations were conducted at seven digisonde stations in South America during the COPEX campaign from October to December 2002. Five stations in Brazil, one in Argentina, and one in Peru, monitored the ionosphere across the continent to study the onset and development of F-region density depletions that cause equatorial spread F (ESF). New ionosonde techniques quantitatively describe the prereversal uplifting of the F layer at the magnetic equator and the eastward motion of the depletions over the stations. Three of the Brazilian stations were located along a field line with a 350-km apex over the equator to investigate the relation of the occurrence of ESF and the presence of sporadic E-layers at the two E-region intersections of the field line. No simple correlation was found.


2015 ◽  
Vol 33 (11) ◽  
pp. 1421-1430 ◽  
Author(s):  
Y. Zhang ◽  
W. Wan ◽  
G. Li ◽  
L. Liu ◽  
L. Hu ◽  
...  

Abstract. We analyze the data recorded during December 2011–November 2012 by a digital ionosonde and a GPS (Global Positioning System) scintillation and (total electron content) TEC receiver collocated at Sanya (109.6° E, 18.3° N; dip lat. 12.8° N), a low-latitude station in the Chinese longitude sector, to carry out a comparative study of ionospheric scintillations and spread F. A good consistency between the temporal variations of GPS scintillation (represented by the S4 index) and of ionogram spread F (represented by the QF index) is found in the pre-midnight period during equinox. However in the post-midnight period during equinox and in the period from post-sunset to pre-sunrise during June solstice, moderate spread F is seen without concurrent GPS scintillation. The possible cause responsible for the difference between post-midnight GPS scintillation and spread F during equinox could be due to the decaying of 400 m scale irregularities associated with equatorial spread F. Regarding the irregularities producing moderate QF and low S4 indices during June solstice, we suggest that the frequently observed sporadic E (Es) layer and the medium-scale traveling ionospheric disturbances (MSTIDs) over Sanya could play important roles in triggering the June solstitial spread-F events.


Sign in / Sign up

Export Citation Format

Share Document