scholarly journals Traffic Congestion Issues, Perceptions, Experience and Satisfaction of Car Drivers/Owners on Urban Roads

Author(s):  
Reena Majid Memon ◽  
Ravindar Kumar Khiani

Traffic congestion is a major issue of Asian megacities which causes the irritation, anger and frustrations among drivers and owners of vehicles during driving in these cities. This paper aims at understanding traffic congestion issues from the perception and experiences of car drivers and owners and their satisfaction level concerning accessibility of circulation within urban roads of Karachi. The issues addressed in this respect are road construction, traffic flow, road crossing, shopping malls along roads, traffic blockage due to VIP movement, congestion during school timing, animal presence on roads, traffic police behavior, marriage halls along the roads, peak hour traffic jams, traffic jams during sociopolitical and religious rallies, road disputes, traffic congestion due to young inexperienced drivers, alternate road availability and pedestrian bridges. The method of investigating these issues is through 42 questionnaire surveys with car drivers and car owners from June to October 2018 on urban roads of Karachi. The analysis of feedback from respondents showed that, more than 90% respondents were satisfied with construction of pedestrian bridges and annoyed with sociopolitical and religious rallies on main urban roads. More than 80% respondents were satisfied with marriage halls along the roads, felt congestion during peak hours and preferred alternate routes to go home. More than 70% agreed that, young and inexperienced drivers cause traffic congestion and felt unsatisfied and displeased with disputes on the streets among residents, traffic police and drivers. More than 60% respondents were satisfied with the road construction but annoyed with VIP protocol and felt congestion during school timings and quite uncomfortable while crossing the road. More than 50% respondents were unsatisfied with shopping malls on both sides of the road, presence of animals on main roads and behavior of traffic police during traffic jams. Finally, concerning traffic flow the respondents were equally divided in their perception. Thus this research presents a detailed perspective of people regarding traffic congestion issues in Karachi for the appropriate response by decision makers of urban transport planning and urban traffic management institutions in city.

2014 ◽  
Vol 513-517 ◽  
pp. 3160-3164
Author(s):  
Xue Li Zhang

Traffic congestion are prevalent in worldwide cities. The imbalance between demand and supply of urban traffic is the root cause of this problem. So taking effective measures to regulate traffic demand, and guiding the traffic problems of the supply and demand balance is the best way to solve traffic congestion. This paper improves the TDM measure, and combines with intelligent information platform for the design of a new urban transport demand management adaptability of dynamic traffic data analysis platform. The platform supported by the technology of wireless sensor communications, intelligent terminals, the Internet and cloud computing is facing with the dynamic needs of traffic flow and traffic congestion state to carry out the operations of spatiotemporal data mining, clustering, and track detection, and to apply it into the traffic hot spots, abnormal driving track, traffic congestion trends and traffic flow detection and analysis, which has a good reference value for the improvement of management and service level of traffic intelligent systems.


2013 ◽  
Vol 361-363 ◽  
pp. 2113-2116
Author(s):  
Jin Xin Cao ◽  
Lei Wang ◽  
Wei Li Zhang ◽  
Jun Wu

The disturbance factors in the traffic flow may lead to traffic congestion. The agglomeration characteristics shown in traffic jams are similar to the biological swarm characteristics. In this paper, acceleration-spacing model is established based on the potential field method and the Lagrange method. The vehicle in front is viewed as the main force source. Then the data of the traffic congestion caused by the temporary parking in front of the school are used to calibrate the parameters of the model. It can be verified that the model is effective.


2022 ◽  
Vol 13 (2) ◽  
pp. 1-25
Author(s):  
Bin Lu ◽  
Xiaoying Gan ◽  
Haiming Jin ◽  
Luoyi Fu ◽  
Xinbing Wang ◽  
...  

Urban traffic flow forecasting is a critical issue in intelligent transportation systems. Due to the complexity and uncertainty of urban road conditions, how to capture the dynamic spatiotemporal correlation and make accurate predictions is very challenging. In most of existing works, urban road network is often modeled as a fixed graph based on local proximity. However, such modeling is not sufficient to describe the dynamics of the road network and capture the global contextual information. In this paper, we consider constructing the road network as a dynamic weighted graph through attention mechanism. Furthermore, we propose to seek both spatial neighbors and semantic neighbors to make more connections between road nodes. We propose a novel Spatiotemporal Adaptive Gated Graph Convolution Network ( STAG-GCN ) to predict traffic conditions for several time steps ahead. STAG-GCN mainly consists of two major components: (1) multivariate self-attention Temporal Convolution Network ( TCN ) is utilized to capture local and long-range temporal dependencies across recent, daily-periodic and weekly-periodic observations; (2) mix-hop AG-GCN extracts selective spatial and semantic dependencies within multi-layer stacking through adaptive graph gating mechanism and mix-hop propagation mechanism. The output of different components are weighted fused to generate the final prediction results. Extensive experiments on two real-world large scale urban traffic dataset have verified the effectiveness, and the multi-step forecasting performance of our proposed models outperforms the state-of-the-art baselines.


2021 ◽  
Vol 14 (1) ◽  
pp. 122-131
Author(s):  
Raman Ekta ◽  
Anand Subhash ◽  
Suresh V. Madha ◽  
Sharma Poonam ◽  
Singh Anju ◽  
...  

India’s intended nationally determined contribution emission which is safe, smart and sustainable green transportation network. Azadpur Mandi which is known for the biggest selling place of fruits and vegetable in Delhi is becoming a place of very heavy traffic area zone. People who are living nearby and the people coming to Azadpur Mandi facing a lot of traffic and also because of no proper direction hinted there people are not able to reach their destination on time. This paper assesses urban traffic congestions and its impact on the daily life of stakeholders and also advocates some possible solutions. In this research found results the number of vehicles has increased in the last ten to fifteen years. The total number of categorised vehicle has also increased. Azadpur Mandi has impacted the land value of the surroundings. The road infrastructure is not sufficient to cater to the traffic volume of this area. The number of lanes in this area is less. This paper outlines the problems of traffic congestion in Asia’s largest sabji (Vegetable) Mandi by using statistical tools. There are very few parking lots inside and outside of the Mandi. This paper investigates the goal 11 of Sustainable Development Goals (SDGs). Goal 11 says to make cities safe, resilience, sustainable. According to the Delhi Traffic police, Azadpur is one of the most accident-prone hotspots of Delhi.


2019 ◽  
Vol 17 ◽  
Author(s):  
Zakiah Ponrahono ◽  
Noorain Mohd Isa ◽  
Ahmad Zaharin Aris ◽  
Rosta Harun

The inbound and outbound traffic flow characteristic of a campus is an important physical component of overall university setting. The traffic circulation generated may create indirect effects on the environment such as, disturbance to lecturetime when traffic congestion occurs during peak-hours, loss of natural environment and greenery, degradation of the visual environment by improper or illegal parking, air pollution from motorized vehicles either moving or in idle mode due to traffic congestion, noise pollution, energy consumption, land use arrangement and health effects on the community of Universiti Putra Malaysia (UPM) Serdang. A traffic volume and Level of Service (LOS) study is required to facilitate better accessibility and improves the road capacity within the campus area. The purpose of this paper is to highlight the traffic volume and Level of Service of the main access the UPM Serdang campus. A traffic survey was conducted over three (3) weekdays during an active semester to understand the traffic flow pattern. The findings on traffic flow during peak hours are highlighted. The conclusions of on-campus traffic flow patterns are also drawn.


Author(s):  
Yi Li ◽  
Weifeng Li ◽  
Qing Yu ◽  
Han Yang

Urban traffic congestion is one of the urban diseases that needs to be solved urgently. Research has already found that a few road segments can significantly influence the overall operation of the road network. Traditional congestion mitigation strategies mainly focus on the topological structure and the transport performance of each single key road segment. However, the propagation characteristics of congestion indicate that the interaction between road segments and the correlation between travel speed and traffic volume should also be considered. The definition is proposed for “key road cluster” as a group of road segments with strong correlation and spatial compactness. A methodology is proposed to identify key road clusters in the network and understand the operating characteristics of key road clusters. Considering the correlation between travel speed and traffic volume, a unidirectional-weighted correlation network is constructed. The community detection algorithm is applied to partition road segments into key road clusters. Three indexes are used to evaluate and describe the characteristic of these road clusters, including sensitivity, importance, and IS. A case study is carried out using taxi GPS data of Shanghai, China, from May 1 to 17, 2019. A total of 44 key road clusters are identified in the road network. According to their spatial distribution patterns, these key road clusters can be classified into three types—along with network skeletons, around transportation hubs, and near bridges. The methodology unveils the mechanism of congestion formation and propagation, which can offer significant support for traffic management.


2018 ◽  
Vol 10 (12) ◽  
pp. 4562 ◽  
Author(s):  
Xiangyang Cao ◽  
Bingzhong Zhou ◽  
Qiang Tang ◽  
Jiaqi Li ◽  
Donghui Shi

The paper studies urban road traffic problems from the perspective of resource science. The resource composition of urban road traffic system is analysed, and the road network is proved as a scarce resource in the system resource combination. According to the role of scarce resources, the decisive role of road capacity in urban traffic is inferred. Then the new academic viewpoint of “wasteful transport” was proposed. Through in-depth research, the paper defines the definition of wasteful transport and expounds its connotation. Through the flow-density relationship analysis of urban road traffic survey data, it is found that there is a clear boundary between normal and wasteful transport in urban traffic flow. On the basis of constructing the flow-density relationship model of road traffic, combined with investigation and analysis, the quantitative estimation method of wasteful transport is established. An empirical study on the traffic conditions of the Guoding section of Shanghai shows that there is wasteful transport and confirms the correctness of the wasteful transport theory and method. The research of urban wasteful transport also reveals that: (1) urban road traffic is not always effective; (2) traffic flow exceeding road capacity is wasteful transport, and traffic demand beyond the capacity of road capacity is an unreasonable demand for customers; (3) the explanation that the traffic congestion should apply the comprehensive theory of traffic engineering and resource economics; and (4) the wasteful transport theory and method may be one of the methods that can be applied to alleviate traffic congestion.


2014 ◽  
Vol 538 ◽  
pp. 455-459
Author(s):  
Dong Yao Jia ◽  
Po Hu

Current evaluation methods on urban traffic congestion are mostly based on traffic flow information. However, the measurement of traffic flow remains to be controversial and difficult for the community. This paper points out an algorithm to acquire traffic parameters and studies the evaluation methods based on it. By extracting multi-color-feature information from image and vehicle shape match algorithm based on fuzzy rules, this method can efficiently distinguish vehicles from each other thus to calculate the traffic state parameters according to the results of this method. Then it can build congestion evaluation model with vehicle delay rate as the critical parameter. The experiment indicates that this method can acquire the accurate real-time road parameters and also proves it is valid to apply this method in urban traffic congestion evaluation in different situations.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Shuzhi Zhao ◽  
Shidong Liang ◽  
Huasheng Liu ◽  
Minghui Ma

Queue length is an important index of the efficiency of urban transport system. The traditional approaches seem insufficient for the estimation of the queue length when the traffic state fluctuates greatly. In this paper, the problem is solved by introducing the Cell Transmission Model, a macroscopic traffic flow, to describe the vehicles aggregation and discharging process at a signalized intersection. To apply the model to urban traffic appropriately, some of its rules were improved accordingly. Besides, we can estimate the density of each cell of the road in a short time interval. We, first, identify the cell, where the tail of the queue is located. Then, we calculate the exact location of the rear of the queue. The models are evaluated by comparing the estimated maximum queue length and average queue length with the results of simulation calibrated by field data and testing of queue tail trajectories. The results show that the proposed model can estimate the maximum and average queue length, as well as the real-time queue length with satisfactory accuracy.


Author(s):  
Delina Mshai Mwalimo ◽  
Mary Wainaina ◽  
Winnie Kaluki

This study outlines the Kerner’s 3 phase traffic flow theory, which states that traffic flow occurs in three phases and these are free flow, synchronized flow and wide moving jam phase. A macroscopic traffic model that is factoring road inclination is developed and its features discussed. By construction of the solution to the Rienmann problem, the model is written in conservative form and solved numerically. Using the Lax-Friedrichs method and going ahead to simulate traffic flow on an inclined multi lane road. The dynamics of traffic flow involving cars(fast moving) and trucks(slow moving) on a multi-lane inclined road is studied. Generally, trucks move slower than cars and their speed is significantly reduced when they are moving uphill on an in- clined road, which leads to emergence of a moving bottleneck. If the inclined road is multi-lane then the cars will tend to change lanes with the aim of overtaking the slow moving bottleneck to achieve free flow. The moving bottleneck and lanechange ma- noeuvres affect the dynamics of flow of traffic on the multi-lane road, leading to traffic phase transitions between free flow (F) and synchronised flow(S). Therefore, in order to adequately describe this kind of traffic flow, a model should incorporate the effect of road inclination. This study proposes to account for the road inclination through the fundamental diagram, which relates traffic flow rate to traffic density and ultimately through the anticipation term in the velocity dynamics equation of macroscopic traffic flow model. The features of this model shows how the moving bottleneck and an incline multilane road affects traffic transistions from Free flow(F) to Synchronised flow(S). For a better traffic management and control, proper understanding of traffic congestion is needed. This will help road designers and traffic engineers to verify whether traffic properties and characteristics such as speed(velocity), density and flow among others determines the effectiveness of traffic flow.


Sign in / Sign up

Export Citation Format

Share Document