scholarly journals Geometric morphometrics of functionally distinct floral organs in Iris pumila: Analyzing patterns of symmetric and asymmetric shape variations

2017 ◽  
Vol 69 (2) ◽  
pp. 223-231 ◽  
Author(s):  
Sanja Radovic ◽  
Aleksandar Urosevic ◽  
Katarina Hocevar ◽  
Ana Vuleta ◽  
Sanja Manitasevic-Jovanovic ◽  
...  

The Iris flower is a complex morphological structure composed of two trimerous whorls of functionally distinct petaloid organs (the falls and the standards), one whorl of the stamens and one tricarpellary gynoecium. The petal-like style arms of the carpels are banded over the basal part of the falls, forming three pollination tunnels, each of which is perceived by the Iris pollinators as a single bilaterally symmetrical flower. Apart from the stamens, all petaloid floral organs are preferentially involved in advertising rewards to potential pollinators. Here we used the methods of geometric morphometrics to explore the shape variation in falls, standards and style arms of the Iris pumila flowers and to disentangle the symmetric and the asymmetric component of the total shape variance. Our results show that symmetric variation contributes mostly to the total shape variance in each of the three floral organs. Fluctuating asymmetry (FA) was the dominant component of the asymmetric shape variation in the falls and the standards, but appeared to be marginally significant in the style arms. The values of FA indexes for the shape of falls (insects? landing platforms) and for the shape of standards (long-distance reward signals) were found to be two orders of magnitude greater compared to that of the style arms. Directional asymmetry appeared to be very low, but highly statistically significant for all analyzed floral organs. Because floral symmetry can reliably indicate the presence of floral rewards, an almost perfect symmetry recorded for the style arm shape might be the outcome of pollinator preferences for symmetrical pollination units.

Author(s):  
Valentina P. Vetrova ◽  
◽  
Alexey P. Barchenkov ◽  
Nadezhda V. Sinelnikova ◽  
◽  
...  

Geometric morphometric analysis of shape variation in the cone scales of two closely related larch species, Larix dahurica Laws. (=Larix gmelinii (Rupr.) Rupr) and L. cajanderi Mayr, was carried out. The data on the taxonomy and distribution of L. dahurica and L. cajanderi are contradictory. The taxonomic status of L. cajanderi has been confirmed by the genetic and morphological studies performed in Russia and based on considerable evidence, but the species has not been recognized internationally, being considered as a synonym of Larix gmelinii var. gmelinii. In the systematics of larch, morphological characters of the generative organs are mainly used as diagnostic markers, among the most important being the shape variation of the cone scales. The aim of this study was to test geometric morphometrics as a tool for analyzing differentiation of L. dahurica and L. cajanderi in the shape of their cone scales. Characterization of shape variations in cone scales using geometric morphometric methods consists in digitizing points along an outline of scales followed by analysis of partial warps, describing individual differences in coordinates of the outline points. We studied the populations of L. dahurica from Evenkia and the Trans-Baikal region and six L. cajanderi populations from Yakutia and Magadan Oblast. In each population, we analyzed samples of 100-150 cones collected from 20-30 trees. Scales taken from the middle part of the cones were scanned using an Epson Perfection V500 Photo. On the scanned images, outline points were placed with a TPSDig program (Rolf, 2010), using angular algorithm (Oreshkova et al., 2015). The data were processed and analyzed using Integrated Morphometrics Programs (IMP) software (http://www.canisius.edu/~sheets/ morphsoft.html, Sheets, 2001), following the guidelines on geometric morphometrics in biology (Pavlinov, Mikeshina, 2002; Zelditch et al., 2004). Initial coordinates of the scale landmarks were aligned with the mean structure for L. dahurica and L. cajanderi cone scales using Procrustes superimposition in the CoordGen6 program. PCA based on covariances of partial warp scores was applied to reveal directions of variation in the shape of the cone scales. The relative deformations of the cone scales (PCA scores) were used as shape variables for statistical comparisons of these two larch species with canonical discriminant analysis. Morphotypes of the cone scales were distinguished in L. dahurica populations by pairwise comparison of samples from trees in the TwoGroup6h program using Bootstrap resampling-based Goodall’s F-test (Sheets, 2001). Samples from the trees in which the cone scales differed significantly (p < 0.01) were considered to belong to different morphotypes. Morphotypes distinguished in L. dahurica populations were compared with the morphotypes that we had previously determined in L. cajanderi populations. The composition and the frequency of occurrence of morphotypes were used to determine phenotypic distances between populations (Zhivotovskii, 1991). Multidimensional scaling matrix of the phenotypic distances was applied for ordination of larch populations. In this research, we revealed differentiation of L. dahurica and L. cajanderi using geometric morphometric analysis of the shape variation of cone scales. The results of PCA of partial warp scores exposed four principal components, which account for 90% of total explained variance in the shape of the cone scales in the two larch species. Graphical representations of these shape transformations in the vector form characterized directions of shape variability in scales corresponding to the maximum and minimum values of four principal components (See Fig. 2). PCA-ordination of the larch populations revealed some difference in the shape variation of the cone scales in L. dahurica and L. cajanderi (See Fig. 3). The results of canonical discriminant analysis of relative deformations of scales showed differentiation of the populations of the two larch species (See Fig. 4). Eleven morphotypes were identified in L. dahurica cones from Evenkia and nine morphotypes in the Ingoda population, three of the morphotypes being common for both populations (See Fig. 5). The shape of L. dahurica cone scales varied from spatulate to oval and their apical margins from weakly sinuate to distinctly sinuate. The Trans-Baikal population was dominated by scales with obtuse (truncate) and rounded apexes. The obtained morphotypes were compared with 25 cone scale morphotypes previously distinguished in the Yakut and the Magadan L. cajanderi populations (See Fig. 3). Four similar morphotypes of cone scales were revealed in the North-Yeniseisk population of L. dahurica and the Yakut populations of L. cajanderi. The differences between them in the populations of the two larch species were nonsignificant (p > 0.01). All morphotypes of cone scales from the Ingoda population of L. dahurica differed significantly from L. cajanderi cone scale morphotypes. The results of multidimensional scaling phenotypic distance matrix calculated based on the similarity of morphotypes of L. dahurica and L. cajanderi populations were consistent with the results of their differentiation based on relative deformations of scales obtained using canonical discriminant analysis (See Fig. 4 and Fig. 7). In spite of the differences in the shape of the cone scales between the North-Yeniseisk and the Trans-Baikal populations of L. dahurica, they both differed from L. cajanderi populations. Thus, phenotypic analysis confirmed differentiation of these two larch species. Despite the similarities between a number of morphotypes, the Yakut L. cajanderi populations were differentiated from L. dahurica populations. Significant differences were noted between intraspecific groups: between L. cajanderi populations from Okhotsk-Kolyma Upland and Yakutia and between L. dahurica populations from Evenkia and the Trans-Baikal region (See Fig. 4). The similarities between species and intraspecific differences may be attributed to the ongoing processes of hybridization and species formation in the region where the ranges of the larches overlap with the ranges of L. czekanowskii Szafer and L. dahurica×L. cajanderi hybrids. Geometric morphometrics can be used as an effective tool for analyzing differentiation of L. dahurica and L. cajanderi in the shape of their cone scales.


2013 ◽  
Vol 16 (2) ◽  
pp. 590-600 ◽  
Author(s):  
Paul G. Sanfilippo ◽  
Alex W. Hewitt ◽  
Jenny A. Mountain ◽  
David A. Mackey

Twin studies are extremely useful for investigating hypotheses of genetic influence on a range of behavioral and physical traits in humans. Studies of physical traits, however, are usually limited to size-related biological characteristics because it is inherently difficult to quantify the morphological counterpart – shape. In recent years, the development of geometry-preserving analytical techniques built upon multivariate statistical methodologies has produced a new discipline in biological shape analysis known as geometric morphometrics. In this study of hand shape analysis, we introduce the reader already familiar with the field of twin research to the potential utility of geometric morphometrics and demonstrate the cross-discipline applicability of methods. We also investigate and compare the efficacy of the 2D:4D ratio, a commonly used marker of sexual dimorphism, to the fully multivariate approach of shape analysis in discriminating between male and female sex. Studies of biological shape variation utilizing geometric morphometric techniques may be completed with software freely available on the Internet and time invested to master the small learning curve in concepts and theory.


Author(s):  
Nicolas D Prinsloo ◽  
Martin Postma ◽  
P J Nico de Bruyn

Abstract Quantified coat pattern dissimilarity provides a visible surface for individual animal traceability to populations. We determined the feasibility in quantifying uniqueness of stripe patterns of Cape mountain zebra (CMZ; Equus zebra zebra) using geometric morphometrics. We photogrammetrically created dense surface models of CMZ (N = 56). Stripe edges were landmarked, superimposed and compared for shape variation across replicates and the population. Significant allometry in stripe patterns prompted allometric correction to remove increased curvature of stripes at the rump, belly and back with larger adult individuals, to facilitate equilibrated comparison between individuals. Re-landmarked replicates showed lower dissimilarity (Di) than non-replicates (Dp), representing minimal landmarking error. Individuals were 78.07 ± 1.79% unique (U=1−DiDp×100%) relative to the study population. Size, the number of torso stripes and degree of branching in four rear torso stripes described the most shape variation (36.79%) but a significant portion could only be distinguished with geometric morphometrics (41.82%). This is the first known use of geometric morphometrics to quantify coat pattern uniqueness, using a model species to provide baseline individual morphological variation. Measures of coat pattern similarity have a place in phenotypic monitoring and identification.


Primates ◽  
2019 ◽  
Vol 60 (5) ◽  
pp. 401-419
Author(s):  
Takeshi Nishimura ◽  
Naoki Morimoto ◽  
Tsuyoshi Ito

2016 ◽  
Vol 4 (16) ◽  
pp. 1
Author(s):  
Mariya A. Chursina ◽  
Oleg P. Negrobov

A study of 186 specimens of Poecilobothrus regalis was conducted in order to examine intraspecific variability of wing shape. The wing shape variation was analyzed using geometric morphometrics analyses. Significant differences in the structure of wing were found both between sexes and between populations. Differences between sexes were observed in the structure of the medium portion of wing. The first extracted canonical variate of geographic variation showed a moderately linear association with latitude and average temperature of February and March. The second canonical variate was correlated with longitude and values of average wind flow velocity. Allometric relationships were weak both between populations and sexes.


2013 ◽  
Vol 111 (1) ◽  
pp. 110-118 ◽  
Author(s):  
Hugo A. Benítez ◽  
Darija Lemic ◽  
Renata Bažok ◽  
Claudio M. Gallardo-Araya ◽  
Katarina M. Mikac

2018 ◽  
Vol 3 (1) ◽  

Facial investigations using geometric morphometrics has been used in many studies to affirm that a particular disease can attribute to an individual’s facial morphology. A landmark based geometric morphometric analysis was used in this study to asses if facial shape changes are associated with cardiovascular diseases (CVD) and if facial morphology of the CVD individuals differs from the normal ones. In the Municipality of Cantilan, Surigao del Sur, frontal face images taken from 32 cardiovascular disease patients and 32 normal individuals were examined using forty-one manually positioned landmarks. Result showed that facial morphology of the CVD group differs from non-CVD group. Procrustes ANOVA showed significant values for the individual symmetry and directional asymmetry. The analysis of structure by the Principal Components reveals particular variations and the scatter plot of the residual asymmetry shows distinct differences between CVD and non-CVD. Therefore, cardiovascular diseases contribute to facial shape changes and that development of facial morphology differs between CVD and non-CVD group.


2017 ◽  
Author(s):  
Marta Vidal-García ◽  
Lashi Bandara ◽  
J. Scott Keogh

SummaryThe quantification of complex morphological patterns typically involves comprehensive shape and size analyses, usually obtained by gathering morphological data from all the structures that capture the phenotypic diversity of an organism or object. Articulated structures are a critical component of overall phenotypic diversity, but data gathered from these structures are difficult to incorporate in to modern analyses because of the complexities associated with jointly quantifying 3D shape in multiple structures.While there are existing methods for analysing shape variation in articulated structures in Two-Dimensional (2D) space, these methods do not work in 3D, a rapidly growing area of capability and research.Here we describe a simple geometric rigid rotation approach that removes the effect of random translation and rotation, enabling the morphological analysis of 3D articulated structures. Our method is based on Cartesian coordinates in 3D space so it can be applied to any morphometric problem that also uses 3D coordinates (e.g. spherical harmonics). We demonstrate the method by applying it to a landmark-based data set for analysing shape variation using geometric morphometrics.We have developed an R tool (ShapeRotator) so that the method can be easily implemented in the commonly used R package geomorph and MorphoJ software. This method will be a valuable tool for 3D morphological analyses in articulated structures by allowing an exhaustive examination of shape and size diversity.


2020 ◽  
Author(s):  
Nahla Lucchini ◽  
Antigoni Kaliontzopoulou ◽  
Guillermo Aguado Val ◽  
Fernando Martínez-Freiría

AbstractSnakes frequently exhibit ontogenetic and sexual variation in head dimensions, as well as the occurrence of distinct colour morphotypes which might be fitness-related. In this study, we used linear biometry and geometric morphometrics to investigate intraspecific morphological variation related to allometry and sexual dimorphism in Vipera seoanei, a species that exhibits five colour morphotypes, potentially subjected to distinct ecological pressures. We measured body size (SVL), tail length and head dimensions in 391 specimens, and examined variation in biometric traits with respect to allometry, sex and colour morph. In addition, we analysed head shape variation by recording the position of 29 landmarks in 123 specimens and establishing a low-error protocol for implementing geometric morphometrics to European vipers. All head dimensions exhibited significant allometry, while sexual differences occurred for SVL, relative tail length and snout height. After considering size effects, we found significant differences in body proportions between the sexes and across colour morphs, which suggests an important influence of lowland and montane habitats in shaping morphological variation. By contrast, head shape did not exhibit significant variation across sexes or colour morphs. Instead it was mainly associated to allometric variation, where the supraocular and the rear regions of the head were the areas that varied the most throughout growth and across individuals. Overall, this study provides a thorough description of morphological variability in Vipera seoanei and highlights the relevance of combining different tools (i.e. linear and geometric morphometrics) and analyses to evaluate the relative contribution of different factors in shaping intraspecific variation.


Sign in / Sign up

Export Citation Format

Share Document