scholarly journals Kinesiological characteristics of ankle joint and rearfoot motion

2011 ◽  
Vol 58 (3) ◽  
pp. 87-89
Author(s):  
Dusko Spasovski ◽  
Zoran Vukasinovic ◽  
Vladan Stevanovic ◽  
Nemanja Slavkovic

Kinesiological analysis of tarsal bones provides better understanding of foot disorders, especially in early childhood, when radiography is hindered by delayed ossification of foot bones. Children begin to walk in the age of 9-15 months, with rearfoot inversion only in initial contact phase, while inversion during terminal stance phase is delayed. Adult walking pattern is usually established at six years of age. Talocrural joint axis medial slope shifts during movements depending on the what part of talus comes in contact with maleolli. As a result, plantar flexion includes valgus, and dorsal flexion includes varus inclination. Subtalar joint axis highly varies among individuals: from 200-680 in sagittal and from 40-470 in frontal plane, with impact on coupled lower leg rotation movements around longitudinal axis. Midtarsal joint has two axes, and their position control the rigidity of forefoot and midfoot kinetic chain. Movement planes of tarsal bones strongly influence walking pattern as well as secure foot development.

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1162
Author(s):  
Hogene Kim ◽  
Sangwoo Cho ◽  
Hwiyoung Lee

This study involves measurements of bi-axial ankle stiffness in older adults, where the ankle joint is passively moved along the talocrural and subtalar joints using a custom ankle movement trainer. A total of 15 elderly individuals participated in test–retest reliability measurements of bi-axial ankle stiffness at exactly one-week intervals for validation of the angular displacement in the device. The ankle’s range of motion was also compared, along with its stiffness. The kinematic measurements significantly corresponded to results from a marker-based motion capture system (dorsi-/plantar flexion: r = 0.996; inversion/eversion: r = 0.985). Bi-axial ankle stiffness measurements showed significant intra-class correlations (ICCs) between the two visits for all ankle movements at slower (2.14°/s, ICC = 0.712) and faster (9.77°/s, ICC = 0.879) speeds. Stiffness measurements along the talocrural joint were thus shown to have significant negative correlation with active ankle range of motion (r = −0.631, p = 0.012). The ankle movement trainer, based on anatomical characteristics, was thus used to demonstrate valid and reliable bi-axial ankle stiffness measurements for movements along the talocrural and subtalar joint axes. Reliable measurements of ankle stiffness may help clinicians and researchers when designing and fabricating ankle-foot orthosis for people with upper-motor neuron disorders, such as stroke.


2011 ◽  
Vol 27 (2) ◽  
pp. 108-115 ◽  
Author(s):  
Joshua T. Weinhandl ◽  
Jeremy D. Smith ◽  
Eric L. Dugan

The purpose of the study was to investigate the effects of fatigue on lower extremity joint kinematics, and kinetics during repetitive drop jumps. Twelve recreationally active males (n= 6) and females (n= 6) (nine used for analysis) performed repetitive drop jumps until they could no longer reach 80% of their initial drop jump height. Kinematic and kinetic variables were assessed during the impact phase (100 ms) of all jumps. Fatigued landings were performed with increased knee extension, and ankle plantar flexion at initial contact, as well as increased ankle range of motion during the impact phase. Fatigue also resulted in increased peak ankle power absorption and increased energy absorption at the ankle. This was accompanied by an approximately equal reduction in energy absorption at the knee. While the knee extensors were the muscle group primarily responsible for absorbing the impact, individuals compensated for increased knee extension when fatigued by an increased use of the ankle plantar flexors to help absorb the forces during impact. Thus, as fatigue set in and individuals landed with more extended lower extremities, they adopted a landing strategy that shifted a greater burden to the ankle for absorbing the kinetic energy of the impact.


Foot & Ankle ◽  
1989 ◽  
Vol 9 (4) ◽  
pp. 194-200 ◽  
Author(s):  
Arne Lundberg ◽  
Ian Goldie ◽  
Bo Kalin ◽  
Göran Selvik

In an in vivo investigation of eight healthy volunteers, three dimensional ankle/foot kinematics were analyzed by roentgen stereophotogrammetry in 10° steps of motion from 30° of plantar flexion to 30° of dorsiflexion of the foot. The study included all of the joints between the tibia and the first metatarsal, as well as the talocalcaneal joint, and was performed under full body load. Although the talocrural joint was found to account for most of the rotation around the transverse axis occurring from 30° of plantar flexion to 30° of dorsiflexion, there was a substantial contribution from the joints of the arch. This was seen particularly in the input arc from 30° of plantar flexion to the neutral position, where the dorsiflexion motion of these joints amounted to 10% to 41% of the total transverse axis rotation.


Actuators ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Taehoon Lee ◽  
Inwoo Kim ◽  
Yoon Su Baek

Lower limb exoskeleton robots help with walking movements through mechanical force, by identifying the wearer’s walking intention. When the exoskeleton robot is lightweight and comfortable to wear, the stability of walking increases, and energy can be used efficiently. However, because it is difficult to implement the complex anatomical movements of the human body, most are designed simply. Due to this, misalignment between the human and robot movement causes the wearer to feel uncomfortable, and the stability of walking is reduced. In this paper, we developed a two degrees of freedom (2DoF) ankle exoskeleton robot with a subtalar joint and a talocrural joint, applying a four-bar linkage to realize the anatomical movement of a simple 1DoF structure mainly used for ankles. However, bidirectional tendon-driven actuators (BTDAs) do not consider the difference in a length change of both cables due to dorsiflexion (DF) and plantar flexion (PF) during walking, causing misalignment. To solve this problem, a BTDA was developed by considering the length change of both cables. Cable-driven actuators and exoskeleton robot systems create uncertainty. Accordingly, adaptive control was performed with a proportional-integral-differential neural network (PIDNN) controller to minimize system uncertainty.


2017 ◽  
Vol 23 ◽  
pp. 120-121
Author(s):  
L. Claassen ◽  
P. Luedtke ◽  
D. Yao ◽  
S. Ettinger ◽  
K. Daniilidis ◽  
...  

Author(s):  
Xin Yan Jiang ◽  
Shu Dong Li ◽  
Ee Chon Teo ◽  
Zhe Xiao Zhou

High-intensity intermittent training (HIIT) has been successfully applied in various sports activities, as HIIT was considered as one of the most efficient training methods of exercise for improving physical performance and reducing the weight of overweight individuals. However, its acute effects of HIIT on gait and balance performance were not addressed. Thus, in this study we examined the acute effects of HIIT on dynamic postural control compared with steady-state training (SST) by analyzing plantar pressure parameters. In this study, sixteen healthy male adults were examined in 3 days. After exhaustive ramp-like cycle ergometer testing, the maximal heart rate (HRmax) of each participant was determined on the first day, then either a 20 minutes HIIT at 80–90% of HRmax or a 20 minutes SST at 60% of HRmax was randomly performed on the second and third day, respectively. Plantar pressure parameters were collected at comfortable walking velocity immediately after HIIT and SST respectively, and compared with the baseline data of plantar pressure gathered before maximal ramp test on the first day. The results showed significant differences in the plantar pressure in these three conditions of gait. Compared to pre-intervention and pre-SST, peak pressure and maximum force in the middle and lateral metatarsal increased significantly in post-HIIT. Meanwhile, the foot balance data indicate that post-HIIT exhibits more foot pronation than baseline. The center of pressure (COP) trajectory was medially shifted during the stance phase in post-SST, and noticeably in post-HIIT. The displacement and velocity of medial-lateral COP in the initial contact phase were greater in post-HIIT; while during the forefoot contact phase, post-HIIT showed fewer time percentages and greater velocity of medial-lateral COP. In conclusion, a single high-intensity intermittent training session adversely affected the acute dynamic postural control than steady-state training in healthy male adults.


Author(s):  
Courtney Middelcoop ◽  
Colten Fales ◽  
Richard T. Stone ◽  
Joseph Kim ◽  
Kristina Schaffhausen ◽  
...  

In studying the effects of expertise on different performance aspects of the gymnastic vault event, various springboard types with similar compression forces were evaluated between expert and novice-level gymnasts. Surface EMGs (sEMG) were placed on four major muscles (biceps femoris, rectus femoris, gastrocnemius medialis, and tibialis anterior) to find each gymnasts’ maximum voluntary contraction. Similarly, board compression and knee flexion angles were also captured at various phases of the performed vaults. Given that gymnasts with more expertise were more consistent in their landing spot on the various vault boards, they had more consistent performance outputs as a result. Expert gymnasts did this by more accurately hitting the sweet spot, more consistently activating their hamstring and gastrocnemius, and decreasing variability during the initial contact phase. By doing this, board compression and performance were both optimized. Coaches can use this information to accelerate the development of novice gymnasts by targeting these aspects.


2017 ◽  
Vol 2 (3) ◽  
pp. 2473011417S0003
Author(s):  
Christian Plaass ◽  
Leif Claassen ◽  
Christina Stukenborg-Colsman ◽  
Daiwei Yao ◽  
Kiriakos Daniilidis ◽  
...  

Category: Ankle Introduction/Purpose: Understanding the morphometry of the ankle joint is crucial to improve total ankle replacement (TAR). Despite improvements of the implant material TAR did not reach comparable success rates to total hip or knee arthroplasty. Recent studies queried whether current designs match with the articular geometry. The present study was performed to evaluate the ankle morphometry and thereby gain information about the joint axis. Methods: We analyzed 96 high-resolution CT-scans of complete caucasian cadaver legs. Using the software Mimics and 3-Matic (Materialize) 22 anatomic parameters of the talocrural joint were assessed, including the length, width and surface area of the tibial and talar bearing areas. Additionally the radii of the bearing areas, the medial distal tibial angle and the height of the talar dome were determined. Therefore we analyzed defined sagittal, axial and frontal planes. Results: The radius of the central trochlea tali was 44.6 ± 4.1 mm (mean ± SD). The central trochlea tali arc length was 40.8 ± 3.0 mm and its width was 27.4 ± 2.5 mm. Additionally we determined 47.0 ± 4.4 mm for the tibial sagittal radius, 27.6 ± 3.0 mm for the tibial arc length and 27.4 ± 2.5 mm for the central tibial width. Conclusion: The present study describes the three-dimensional morphometry of the caucasian ankle joint. Our results might be considered for the development of total ankle replacements.


2003 ◽  
Vol 2003 (1) ◽  
pp. 597-602 ◽  
Author(s):  
Dennis Cashman ◽  
Jackie Stephens ◽  
LT Thomas Boyles

ABSTRACT Planning, designing, and executing an area exercise in accordance with the National Preparedness for Response Exercise Program (PREP) Guidelines is an extensive time and resource undertaking. Since it's inception in 1991, the National Strike Force Coordination Center (NSFCC) has designed, updated and tested a successful exercise development process. This overview of the process outlines requirements necessary to manage a coordinated exercise development, execution, and follow up lessons learned. The process follows a 24-week cycle depending upon the needs of the organizations being exercised. The NSFCC must adhere to and follow the planning cycle because: at least three other government-led exercises are undergoing development at any given time; adequate time is needed for the Joint Design Team to plan effectively and provide the required data to the NSFCC; members of the Area Committee need time to accomplish their own exercise preparation processes; and time is needed to produce the exercise manuals and arrange logistics for personnel and equipment. The cycle is broken into six phases: the Initial Contact Phase, Coordination & Initial Production Phase, Interim Production Phase, Final Production Phase, Exercise Execution Phase, and Report Development Phase (Figure 1).


2020 ◽  
Vol 32 (5) ◽  
pp. 1080-1087
Author(s):  
Takehito Kikuchi ◽  
Taiki Oshimoto ◽  
Isao Abe ◽  
Kenichiro Tanaka ◽  
Yasue Asaumi ◽  
...  

Walking is one of the most important activities in daily living, and difficulty walking presents a severe limitation. In this study, we develop shoes with elastomer-embedded flexible joints (EEFJ) that assist the tibialis anterior in its function during the initial stance and swing phase of the gait cycle. The EEFJ designed is suitable for shoes, with an adjustment mechanism incorporated for easy adjustment. To assess the ease of wearing, we measured the time it took four elderly subjects to wear the shoes for the first time. The donning time was less than one minute for all four participants. Furthermore, no one indicated discomfort when they walked naturally with the shoes. The supporting effect of the EEFJ shoes was assessed for ten healthy male subjects walking with their ankles relaxed. Statistical analysis reveals significant differences in the ankle at initial contact (p=0.02) and maximum plantar flexion (p=0.03). The average angle at initial contact while wearing the EEFJ shoes is 5.3° less than without it, and the average maximum plantar flexion is 5.1° less than without the shoes.


Sign in / Sign up

Export Citation Format

Share Document