scholarly journals Precursor type affecting surface properties and catalytic activity of sulfated zirconia

2007 ◽  
pp. 105-113 ◽  
Author(s):  
Aleksandra Zarubica ◽  
Goran Boskovic

Zirconium-hydroxide precursor samples are synthesized from Zr-hydroxide, Zr-nitrate, and Zr-alkoxide, by precipitation/impregnation, as well as by a modified sol-gel method. Precursor samples are further sulphated for the intended SO4 2- content of 4 wt.%, and calcined at 500-700oC. Differences in precursors? origin and calcination temperature induce the incorporation of SO4 2- groups into ZrO2 matrices by various mechanisms. As a result, different amounts of residual sulphates are coupled with other structural, as well as surface properties, resulting in various catalytic activities of sulphated zirconia samples. Catalyst activity and selectivity are a complex synergistic function of tetragonal phase fraction, sulphates contents, textural and surface characteristics. Superior activity of SZ of alkoxide origin can be explained by a beneficial effect of meso-pores owing to a better accommodation of coke deposits.

2010 ◽  
Vol 132 ◽  
pp. 149-161 ◽  
Author(s):  
F.E. Lugo del Ángel ◽  
R. Silva-Rodrigo ◽  
A. Vázquez Rodríguez ◽  
R. García Alamilla ◽  
J. Navarrete Bolaños ◽  
...  

Pure zirconia, sulfated zirconia and sulfated zirconia modified with 2, 3, 5 and 10 wt. % of cerium oxide were synthesized by sol-gel method. Pt phase was impregnated on the supports using the incipient wet technique. Sulfated zirconium oxide showed tetragonal phase only. Addition of cerium to sulfated zirconia did not modify the tetragonal phase but produced a marked effect on the surface area. Low cerium content may greatly increase the surface area; however, too high cerium content (10 wt.%) may decrease the surface area. Pore size had influence on the catalytic activity and ZrO2 acidity was favored by the sulfate ion incorporation. All catalysts having Brönsted and Lewis acid sites were active in the n-hexane isomerization. The highest n-hexane conversion (40%) and selectivity towards DMB (26%), 2-methyl pentane (61%) and 3-methyl pentane (13%) were reached over the catalyst with 10 wt. % cerium oxide. In addition, sulfated zirconium oxide presented high selectivity of light products (< C6), which indicated that the addition of this doping agent (CeO2) made the catalysts more selective toward the desired reaction products.


2020 ◽  
Vol 6 (11) ◽  
pp. 23-30
Author(s):  
A. Sidorov ◽  
V. Molchanov ◽  
L. Mushinskii ◽  
R. Brovko

The t-plot method is a well-known method for determining the volumes of micro- and/or mesoporous materials and the specific surface area of a sample by comparison with a reference adsorption isotherm of a non-porous material having a similar surface chemical composition. The article describes the applicability of the t-graph method to the analysis of the surface properties of zinc modified samples of zeolite H-ZSM-5 before and after the reactions of methanol transformation into hydrocarbons occur on them. Zeolites are widely used as catalysts in the petrochemical and refining industries. These materials contain active Bronsted acid sites, distributed within the microporous structure of zeolites, which leads to selective catalysis due to the difference in the pore shape of the zeolites used. The size, shape of the zeolite catalyst determines the catalytic performance in terms of both product selectivity and catalyst deactivation. In most zeolite catalyzed hydrocarbon conversion reactions, catalyst activity is lost due to carbon deposition. In this connection, the determination of the surface properties of zeolites is an important task that contributes to the disclosure of the physicochemical essence of the process of deactivation of zeolites. The recalculation of nitrogen adsorption isotherms using the t-plot model made it possible to determine the volume of micro and mesopores. Based on the t-graph data, it can be concluded that during the transformation of methanol into hydrocarbons, carbon accumulates on the surface of the zeolite. In this case, the predominant deposition of carbon on the surface of mesopores, due to the fact that in the process of decontamination, from 61 to 73% of the volume of mesopores is lost. The number of micropores also decreases, but the share of losses is 42–54%, which is 10–15% lower compared to the loss of mesopore volume.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Titinan Chanchuey ◽  
Chaowat Autthanit ◽  
Bunjerd Jongsomjit

The catalytic dehydration of ethanol to ethylene over the mesoporous Al-SSP and Mo-doped Al-SSP catalysts was investigated. The Al-SSP catalyst was first synthesized by the modified sol-gel method and then doped with Mo by impregnation to obtain 1% Mo/Al-SSP and 5% Mo/Al-SSP catalysts (1 and 5 wt% of Mo). The final catalysts were characterized using various techniques such as XRD, N2physisorption, SEM/EDX, TEM, and NH3-TPD. The catalytic activity for all catalysts in gas-phase ethanol dehydration reaction was determined at temperature range of 200°C to 400°C. It was found that the most crucial factor influencing the catalytic activities appears to be the acidity. The acid property of catalysts depended on the amount of Mo loading. Increased Mo loading in Al-SSP resulted in increased weak acid sites, which enhanced the catalytic activity. Besides acidity, the high concentration of Al at surface of catalyst is also essential to obtain high activity. Based on the results, the most suitable catalyst in this study is 1% Mo/Al-SSP catalyst, which can produce ethylene yield of ca. 90% at 300°C with slight amounts of diethyl ether (DEE) and acetaldehyde.


1997 ◽  
Vol 15 (8) ◽  
pp. 593-607 ◽  
Author(s):  
A. Abd. El-Aal ◽  
A.M. Ghozza ◽  
G.A. El-Shobaky

The surface characteristics, viz., the specific surface area SBET, the total pore volume Vp and the mean pore radius r̄, of NiO and Fe2O3 were determined from N2 adsorption isotherms conducted at −196°C for the different adsorbents preheated in air at temperatures in the range 300–800°C. The catalytic activities exhibited in CO oxidation by O2 on the various solids were investigated at temperatures varying between 150°C and 400°C. The effect of heating the NiO and Fe2O3 solids in CO and O2 atmospheres at 175–275°C on their catalytic activities was also studied. The results showed that increasing the calcination temperature in the range 300–800°C resulted in a progressive decrease in the SBET value of NiO and Fe2O3. The computed values of the apparent activation energy for the sintering of the oxides were 71 and 92 kJ/mol, respectively. The sintering of NiO and Fe2O3 took place mainly via a particle adhesion mechanism. The catalytic activity of NiO decreased progressively on increasing its calcination temperature from 300°C to 800°C, due to a decrease in its SBET value and the progressive removal of excess O2 which was present as non-stoichiometric NiO. This treatment also decreased the catalytic activity of Fe2O3. The decrease was, however, more pronounced when the temperature increased from 300°C to 400°C which was a result of the crystallization of the ferric oxide into the α-Fe2O3 phase. An increase in the calcination temperature for both oxides from 300°C to 800°C did not modify the mechanism of oxidation of CO by O2 over the various solids but rather changed the concentration of catalytically active sites. Heating NiO and Fe2O3 in CO and O2 atmospheres at 175–275°C modified their catalytic activities, with Fe2O3 being influenced to a greater extent than NiO.


2018 ◽  
Vol 74 (11) ◽  
pp. 1334-1347 ◽  
Author(s):  
Bouchra El Bakkali ◽  
Guido Trautwein ◽  
Juan Alcañiz-Monge ◽  
Santiago Reinoso

The oxidation of adamantane with hydrogen peroxide catalyzed by zirconia-supported 11-molybdovanadophosphoric acid is shown to be a suitable green route for the synthesis of adamantanol and adamantanone. This work evaluates how the catalyst activity and selectivity are affected by some of its preparative parameters, such as the method for supporting the catalytically active heteropoly acid over the zirconia matrix or the pretreatments applied to the resulting materials before being used as heterogeneous catalysts. Our results indicate that the most effective catalysts able to maintain their activity after several reaction runs are those prepared by following the sol-gel route, whereas the most selective catalysts are those obtained by impregnation methods. Moreover, the calcination temperature has also been identified as a relevant parameter influencing the performance of catalysts based on supported heteropoly acids. The increasing catalytic activity observed over several consecutive reaction runs has been attributed to the formation of peroxo derivatives of polyoxometalate clusters at the surface of the catalyst and their accumulation after each reaction cycle.


2015 ◽  
Vol 1123 ◽  
pp. 96-99
Author(s):  
Is Fatimah ◽  
Zulfa Zuhrufa

The sulfated zirconia catalysts were was prepared by sol–gel processes consist of varied templating method. Both preparations consist of sol-gel synthesis of zirconium dioxide followed by sulfatation process by using NH4SO4solid reaction method. Two different templating agent; urea and cetyltrimetyl ammonium bromide was used in sol-gel processes. The prepared material was characterized using scanning electron microscope (SEM), x-ray diffraction (XRD) and Brunauer–Emmett–Teller (BET) measurements. From the XRD measurement it can be concluded that both materials consist of ZrO2in combined phases while from BET surface area analysis it can be noted that material prepared by urea template has higher specific surface area compared to that use CTAB template. Both materials exhibit the activity as acid catalyst in microwave assisted conversion of citronellal. It is also confirmed that the higher the surface area the higher total conversion of citronellal obtained. Study on the correlation between physicochemical properties of materials with the catalytic activity was discussed in this paper.


2004 ◽  
Vol 227 (2) ◽  
pp. 470-478 ◽  
Author(s):  
S. Ardizzone ◽  
C.L. Bianchi ◽  
G. Cappelletti ◽  
F. Porta

MRS Advances ◽  
2020 ◽  
Vol 5 (61) ◽  
pp. 3141-3152
Author(s):  
Alma C. Chávez-Mejía ◽  
Génesis Villegas-Suárez ◽  
Paloma I. Zaragoza-Sánchez ◽  
Rafael Magaña-López ◽  
Julio C. Morales-Mejía ◽  
...  

AbstractSeveral photocatalysts, based on titanium dioxide, were synthesized by spark anodization techniques and anodic spark oxidation. Photocatalytic activity was determined by methylene blue oxidation and the catalytic activities of the catalysts were evaluated after 70 hours of reaction. Scanning Electron Microscopy and X Ray Diffraction analysis were used to characterize the catalysts. The photocatalyst prepared with a solution of sulfuric acid and 100 V presented the best performance in terms of oxidation of the dye (62%). The electric potential during the synthesis (10 V, low potential; 100 V, high potential) affected the surface characteristics: under low potential, catalyst presented smooth and homogeneous surfaces with spots (high TiO2 concentration) of amorphous solids; under low potential, catalyst presented porous surfaces with crystalline solids homogeneously distributed.


Author(s):  
Mohsen Nikoorazm ◽  
Maryam Khanmoradi ◽  
Masoumeh Sayadian

Introduction:: MCM-41 was synthesized using the sol-gel method. Then two new transition metal complexes of Nickel (II) and Vanadium (IV), were synthesized by immobilization of adenine (6-aminopurine) into MCM-41 mesoporous. The compounds have been characterized by XRD, TGA, SEM, AAS and FT-IR spectral studies. Using these catalysts provided an efficient and enantioselective procedure for oxidation of sulfides to sulfoxides and oxidative coupling of thiols to their corresponding disulfides using hydrogen peroxide at room temperature. Materials and Methods:: To a solution of sulfide or thiol (1 mmol) and H2O2 (5 mmol), a determined amount of the catalyst was added. The reaction mixture was stirred at room temperature for the specific time under solvent free conditions. The progress of the reaction was monitored by TLC using n-hexane: acetone (8:2). Afterwards, the catalyst was removed from the reaction mixture by centrifugation and, then, washed with dichloromethane in order to give the pure products. Results:: All the products were obtained in excellent yields and short reaction times indicating the high activity of the synthesized catalysts. Besides, the catalysts can be recovered and reused for several runs without significant loss in their catalytic activity. Conclusion:: These catalytic systems furnish the products very quickly with excellent yields and VO-6AP-MCM-41 shows high catalytic activity compared to Ni-6AP-MCM-41.


Author(s):  
Yonis Fornazier Filho ◽  
Ana Caroliny Carvalho da Cruz ◽  
Rolando Pedicini ◽  
José Ricardo Cezar Salgado ◽  
Priscilla Paiva Luz ◽  
...  

AbstractPhysical and electrochemical properties of Pd catalysts combined with Ru and Mo on carbon support were investigated. To this end, Pd, Pd1.3Ru1.0, Pd3.2Ru1.3Mo1.0 and Pd1.5Ru0.8Mo1.0 were synthesized on Carbon Vulcan XC72 support by the method of thermal decomposition of polymeric precursors and then physically and electrochemically characterized. The highest reaction yields are obtained for Pd3.2Ru1.3Mo1.0/C and Pd1.5Ru0.8Mo1.0/C and, as demonstrated by thermal analysis, they also show the smallest metal/carbon ratio compared the other catalysts. XRD (X-ray Diffraction) and Raman analyses show the presence of PdO and RuO2 for the Pd/C and the Pd1.3Ru1.0/C catalysts, respectively, a fact not observed for the Pd3.2Ru1.3 Mo1.0 /C and the Pd1.5Ru0.8Mo1.0/C catalysts. The catalytic activities were tested for the ethanol oxidation in alkaline medium. Cyclic voltammetry (CV) shows Pd1.3Ru1.0/C exhibiting the highest peak of current density, followed by Pd3.2Ru1.3Mo1.0/C, Pd1.5Ru0.8Mo1.0/C and Pd/C. From, chronoamperometry (CA), it is possible to observe the lowest rate of poisoning for the Pd1.3Ru1.0/C, followed by Pd3.2Ru1.3Mo1.0/C, Pd1.5Ru0.8Mo1.0/C and Pd/C. These results suggested that catalytic activity of the binary and the ternary catalysts are improved in comparison with Pd/C. The presence of RuO2 activated the bifunctional mechanism and improved the catalytic activity in the Pd1.3Ru1.0/C catalyst. The addition of Mo in the catalysts enhanced the catalytic activity by the intrinsic mechanism, suggesting a synergistic effect between metals. In summary, we suggest that it is possible to synthesize ternary PdRuMo catalysts supported on Carbon Vulcan XC72, resulting in materials with lower poisoning rates and lower costs than Pd/C. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document