scholarly journals Fatty acid composition of meat from the hind leg cut of rabbits (Oryctolagus cunniculus) fed diets containing graded levels of processed tallow (Detarium microcarpum) seed meal

2015 ◽  
Vol 31 (2) ◽  
pp. 283-290
Author(s):  
E.Z. Jiya ◽  
A.T. Ijaiya ◽  
B.A. Ayanwale ◽  
A.O. Olorunsanya

Eighty one (81) weaned rabbits of mixed breeds and sexes (male and female) were randomly allotted to nine treatment groups with nine rabbits per treatment. Each treatment had three replicates with three rabbits per replicate. Processed tallow was included in the diets as a source of protein which was set at 16 % CP. The control diet had 100 % palm kernel cake (PKC) and 0 % tallow seed meal (TSM). Diets 1 - 4 contained cooked tallow seed meal (CTSM) included at 75 % PKC: 25 % CTSM, 50 % PKC: 50% CTSM, 25% PKC:75 % CTSM and 0 % PKC: 100 % CTSM, while groups 5 - 8 had fermented tallow seed meal diets (FTSM) and included at the same levels as in the cooked diets. Fifty four rabbits were randomly selected for slaughtering from the nine groups with six rabbits (male and females) per group. Fatty acid content of the hind leg of rabbits were determined. All the fatty acids measured were significantly (P<0.05) influenced by the processing methods except decosenoic acid methyl ester and pentadecanoic acid methyl esters. The levels of inclusion of tallow also significantly (P<0.05) affected all the fatty acids composition measured. It was therefore concluded that irrespective of the processing methods the use of tallow in the diets of rabbits has no negative effect on the fatty acid composition of rabbit meat.

Author(s):  
Santino Orecchio ◽  
Antonella Maggio

The aim of this study (first analytical approach) was to obtain data on the fatty acid composition of gluten-free foods (bakery products) for celiac people. The study included 35 different products (snacks, biscuits, bakery products, pasta, flours, etc.) from several manufacturers. After extraction and esterification, the fatty acid content was determined by GC-MS. The monounsaturated fatty acids (MUFAs) are the major constitutes (57%) of the fatty acids pool followed by saturated fatty acids (SFAs) (30%) and polyunsaturated fatty acid (13%). Only fifteen, of the thirty-five gluten free samples analyzed, provide adequate energy intake, while in eleven samples, saturated fatty acids take more energy than that recommended by EFSA. It has emerged that local producers generally use the finest raw materials (olive oil, etc.) compared to the industries which, as has been pointed out, in many cases use palm and palm kernel oils although gluten free commercial products are high added value foods, expensive and intended for a particularly sensitive public.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 941
Author(s):  
Ewa Szpunar-Krok ◽  
Anna Wondołowska-Grabowska ◽  
Dorota Bobrecka-Jamro ◽  
Marta Jańczak-Pieniążek ◽  
Andrzej Kotecki ◽  
...  

Soybean is a valuable protein and oilseed crop ranked among the most significant of the major crops. Field experiments were carried out in 2016–2019 in South-East Poland. The influence of soybean cultivars (Aldana, Annushka), nitrogen fertilizer (0, 30, 60 kg∙ha−1 N) and inoculation with B. japonicum (control, HiStick® Soy, Nitragina) on the content of fatty acids (FA) in soybean seeds was investigated in a three-factorial experiment. This study confirms the genetic determinants of fatty acid composition in soybean seeds and their differential accumulation levels for C16:0, C16:1, C18:1n9, C18:2, C18:3, and C20:0 as well saturated (SFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acids. Increasing the rate from 30 to 60 kg ha−1 N did not produce the expected changes, suggesting the use of only a “starter” rate of 30 kg ha−1 N. Inoculation of soybean seeds with a strain of Bradyrhizobium japonicum (HiStick® Soy, BASF, Littlehampton, UK and Nitragina, Institute of Soil Science and Plant Cultivation–State Research Institute, Puławy, Poland) is recommended as it will cause a decrease in SFA and C16:0 acid levels. This is considered nutritionally beneficial as its contribution to total fatty acids determines the hypercholesterolemic index, and it is the third most accumulated fatty acid in soybean seeds. The interaction of cultivars and inoculation formulation on fatty acid content of soybean seeds was demonstrated. An increase in the value of C16:0 content resulted in a decrease in the accumulation of C18:1, C18:2, and C18:3 acids. The content of each decreased by almost one unit for every 1% increase in C16:0 content. The dominant effect of weather conditions on the FA profile and C18:2n6/C18:3n3 ratio was demonstrated. This suggests a need for further evaluation of the genetic progress of soybean cultivars with respect to fatty acid composition and content under varying habitat conditions.


1974 ◽  
Vol 25 (4) ◽  
pp. 657 ◽  
Author(s):  
TH Stobbs ◽  
DJ Brett

Jersey cows were used in a change-over design to examine the effect of three levels of energy intake (lucerne hay at 100, 75 and 50% ad lib.) on milk yield, milk composition, fatty acid composition of milk fat, and blood metabolites (non-esterified fatty acids, glucose and total ketones) to determine which measurement was the most accurate indicator of intake of energy. Milk yields averaged 9.9, 8.7 and 7.2 kg/cow/day with relative intakes of 100, 75 and 50% of ad lib. When energy was restricted the proportion of C4–C16 fatty acids in milk fat decreased (72, 69 and 59%), while the proportion of oleic acid increased (15, 18 and 26%). These changes occurred within approximately 6 days on new energy levels. Fore milk and strippings had similar fatty acid proportions. Restriction of energy reduced the solids not fat, protein and casein contents of milk, and increased its butter fat percentage. Non-esterifred fatty acid levels in blood plasma increased with restriction of feed (348, 528 and 579 µ-equiv./l). Glucose and ketone bodies of blood averaged 58 mg/100 ml and 9.1 mg/100 mi respectively, and did not vary between treatments. It is concluded that milk production is the most sensitive indicator of the intake of digestible energy where change-over designs are used. However, when individual animal variation is not removed in the analysis, the intake of energy is most closely correlated with the fatty acid composition of milk fat (r = 0.73 and –0.74 for C4–C16 acids and oleic acid respectively). Significant correlations with the protein to fat and casein to fat ratios of milk were also measured (r = 0.64 and 0.63 respectively). There was a poor relationship between energy intake and blood composition (r = –0.25 for non-esterified fatty acid content).


2003 ◽  
Vol 90 (3) ◽  
pp. 709-716 ◽  
Author(s):  
Nigel D. Scollan ◽  
Mike Enser ◽  
Suresh K. Gulati ◽  
Ian Richardson ◽  
Jeff D. Wood

Enhancing the polyunsaturated fatty acid (PUFA) and decreasing the saturated fatty acid content of beef is an important target in terms of improving the nutritional value of this food for the consumer. The present study examined the effects of feeding a ruminally protected lipid supplement (PLS) rich in PUFA on the fatty acid composition of longissimus thoracis muscle and associated subcutaneous adipose tissue. Animals were fed ad libitum on grass silage plus one of three concentrate treatments in which the lipid source was either Megalac (rich in palmitic acid; 16:0) or PLS (soyabean, linseed and sunflower-seed oils resulting in an 18:2n−6:18:3n−3 value of 2·4:1). Treatment 1 contained 100g Megalac/kg (Mega, control); treatment 2 (PLS1) contained 54g Megalac/kg with 500g PLS/d fed separately; treatment 3 (PLS2) contained no Megalac and 1000g PLS/d fed separately. The PLS was considered as part of the overall concentrate allocation per d in maintaining an overall forage:concentrate value of 60:40 on a DM basis. Total dietary fat was formulated to be 0·07 of DM of which 0·04 was the test oil. Total intramuscular fatty acids (mg/100g muscle) were decreased by 0·31 when feeding PLS2 compared with Mega (P<0·05). In neutral lipid, the PLS increased the proportion of 18:2n−6 and 18:3n−3 by 2·7 and 4·1 on diets PLS1 and PLS2 v. Mega, respectively. Similar responses were noted for these fatty acids in phospholipid. The amounts or proportions of 20:4n−6, 20:5n−3 or 22:6n−3 were not influenced by diet whereas the amounts and proportions of 22:4n−6 and 22:5n−3 in phospholipid were decreased with inclusion of the PLS. The amounts of the saturated fatty acids, 14:0, 16:0 and 18:0, in neutral lipid were on average 0·37 lower on treatment PLS2 compared with Mega. Feeding the PLS also decreased the proportion of 16:0 in neutral lipid. The amount of 18:1n-9 (P=0·1) and the amount and proportion of 18:1 trans (P<0·01) were lower on treatments PLS1 and PLS2 in neutral lipid and phospholipid. Conjugated linoleic acid (cis-9, trans-11) was not influenced by diet in the major storage fraction for this fatty acid, neutral lipid. The PUFA:saturated fatty acids value was increased markedly (×2·5) with inclusion of the PLS (P<0·001) while the σn−6:n−3 value increased slightly (×1·2; P=0·015). The results suggest that the protected lipid used, which was rich in PUFA, had a high degree of protection from the hydrogenating action of rumen micro-organisms. The PLS resulted in meat with a lower content of total fat, decreased saturated fatty acids and much higher 18:2n−6 and 18:3n−3. The net result was a large shift in polyunsaturated: saturated fatty acids, 0·28 v. 0·08, on feeding PLS2 compared with Mega, respectively.


2020 ◽  
Vol 11 (213) ◽  
pp. 73-77
Author(s):  
Olga Timofeeva ◽  
◽  
Lyudmila Belysheva ◽  
Irina Avsyankina ◽  
Olga Likhoshva

Based on the analysis of the fatty acid composition of fish gastronomy, presented in the Minsk trade network, data on the content of saturated, monounsaturated and ω-3 and ω-6 polyunsaturated fatty acids and their ratio were obtained.


2003 ◽  
Vol 83 (1) ◽  
pp. 45-52
Author(s):  
T. A. Van Lunen ◽  
D. Hurnik ◽  
V. Jebelian

Two hundred gilts and 200 barrows, housed within sex in pens of 25, were randomly allotted to two replications of four dietary treatments to determine the effects of incorporating 30, 20, 10 or 0% extruded soybeans (ESB), displacing a commercial protein supplement, in barley-based grower and finisher diets for pigs. Growth, feed intake and carcass quality of the pigs, and meat quality and fatty acid composition of the pork from a random subset of the pigs on test were determined. No sex × diet interactions were observed. ESB inclusion rate had no effect on growth rate; however, per-pen feed consumption decreased numerically with increasing ESB resulting in an improvement in feed efficiency. The 30% ESB inclusion rate increased carcass fat content (P < 0.05) compared with the control, whereas lean content was unaffected. Meat colour and marbling score were similar across all treatments whereas fat and lean firmness was reduced by the 30% ESB inclusion rate (P < 0.05) compared with all other treatments. Increasing ESB in the diet altered the fatty acid content of the pork by decreasing the amount of short-chain saturated and monounsaturated fatty acids and increasing the amount of long-chain polyunsaturated fatty acids (PUFA). The results of this study indicate that ESB can be used as the sole source of supplemental protein in barley-based diets for pigs with no detrimental effects on performance and minimal negative effects on carcass and meat quality. Alteration of fatty acid content of pork from feeding ESB has both positive and negative implications for consumer acceptance by increasing PUFA content while concomitantly increasing the risk of premature oxidation. Key words: Extruded soybeans, pigs, pork, growth, fatty acids, meat quality


2001 ◽  
Vol 73 (2) ◽  
pp. 253-260 ◽  
Author(s):  
K. Raes ◽  
S. de Smet ◽  
D. Demeyer

AbstractThe effect of double-muscling (DM) genotype (double-muscling, mh/mh; heterozygous, mh/+; normal, +/+) of Belgian Blue (BB) young bulls on the intramuscular fatty acid composition, in particular conjugated linoleic acid (CLA) and polyunsaturated fatty acids (PUFA) was examined in five different muscles. The relative fatty acid composition showed only minor differences between muscles within genotypes. However, the DM genotype had a large effect on both the intramuscular total fatty acid content and on the relative fatty acid composition. Across muscles, the mh/mh animals had a lower total fatty acid content compared with the +/+animals (907 v: 2656 mg/100 g muscle;P< 0·01) and a higher PUFA proportion in total fatty acids (27·5 v 11·3 g/100 g total fatty acids;P< 0001), resulting in a higher PUFA/saturated fatty acid ratio (0·55 v 0·18;P< 0·01) and a lower n-6/n-3 ratio (5·34 v. 6·17;P< 0·01). The heterozygous genotype was intermediate between the two homozygous genotypes. The relative CLA content was similar in the mh/mh and +/+ genotypes and approximated 0·4 to 0·5 g/100 g total fatty acids. From the data it is further suggested that differences in the metabolism of the n-3 and n-6 fatty acids could exist between DM genotypes.


2019 ◽  
Vol 22 (1) ◽  
pp. 105-113
Author(s):  
G. Kalinova ◽  
Zh. Dimitrov ◽  
H. Daskalov ◽  
D. Mladenova ◽  
P. Mechkarova

The present study provides scientific information for fatty acid composition of white brine cheese from cow milk, produced from all regions of Bulgaria, across seasons for the period 2012–2016. A total of 670 samples produced from different manufacturers and collected from supermarkets by Official control of Bulgarian Food Safety Agency (BFSA) were examined. Fatty acid composition was determined by gas chromatography. The milk fat purity of 18 samples was established through gas chromatographic analysis of triglycerides. Seasonal variations were observed in fatty acid composition of white brine cheese. The seasonal changes in the concentration of lauric, myristic, palmitic, stearic, oleic and α-linolenic acids have largely contributed to the variation of fatty acid composition of cheese. Saturated fatty acids (SFAs) were in the range 68.39–71.53% of total FAs and the proportion of unsaturated fatty acids (UFA) was 28.44–31.61% of total FAs. Fourty-five out of examined samples have exhibited different fatty acid profile than that established in the present study for cow milk cheese. The determined SFAs were 44.7–57.5% and UFA varied from 42.5% to 55.3%. The fatty acids with short chain (C4:0 ÷ C10:0) were not detected or in traces, lauric and myristic acids were in small amounts, while palmitic and oleic acids predominated in the fatty acid composition of cheese analogues.


2011 ◽  
Vol 15 (1) ◽  
pp. 274 ◽  
Author(s):  
Julius Pontoh ◽  
Nancy T.N Buyung

ANALISA ASAM LEMAK DALAM MINYAK KELAPA MURNI (VCO) DENGAN DUA PERALATAN KROMATOGRAFI GAS Julius Pontoh1) dan Nancy T.N. Buyung2); e-mail:[email protected] 1)Program Studi Kimia FMIPA Universitas Sam Ratulangi, Manado 95115 2)Alumni Program Studi Kimia FMIPA Universitas Sam Ratulangi, Manado 95119 ABSTRAK Komposisi asam asam lemak dalam minyak kelapa sangat penting untuk menilai kualitas dari minyak tersebut.  Untuk minyak kelapa, komposisi dari asam lemak rantai menengah seperti kaprilik, kaprat dan laurat menjadi asam asam lemak penting.  Di Indonesia ada dua laboratorium yang banyak digunakan untuk menganalisa asam asam lemak dalam minyak kelapa murni.  Tujuan penelitian ini adalah untuk membandingkan kedua laboratorium tersebut dalam menganalisa asam asam lemak.  Kromatogram dari Laboratorium pertama menunjukan garis dasar yang ebih baik, tetapi tidak dapat mendeteksi asam stearat.  Waktu retensi asam asam lemak dalam kedua komatogram sangat berbeda.  Demikian juga dengan luas puncak dari asam asam lemak berbeda dalam kedua kromatogram.  Namun demikian, persentasi luas pencak dari masing masing asam lemak dalam kedua kromatogram hampir sama. Kata kunci: kromatogarafi gas, waktu retensi   FATTY ACID ANALYSIS IN VIRGIN COCONUT OIL (VCO) WITH TWO TYPES GAS CHROMATOGRAPHY ABSTRACT Fatty acid composition in coconut oil is very important to evaluate the quality of the oil. For coconut oil, the composition of medium length of fatty acids such as caprylic, capric and lauric acids are the interest of the oil. To date, this fatty acid composition is the best to be analyzed by gas chromatography.  In Indonesia, there are two laboratories used to analyze the fatty acids.  The purpose of this study is to compare the two laboratories in the analysis the compounds.  Samples of commercial coconut oils were treated with acid and base to converted into Fatty acid methyl ester.  The derivatives were extracted with hexane and ready to be send to the laboratories.  The results show the chromatogram of the two laboratories is totally difference. The chromatograph from Laboratory 1 showed very good base line but there was no stearic fatty acid peak shown  The retention time for the same fatty acids is different. Peak areas among the same fatty acids are totally different between the two laboratories, but the percentage for each fatty acid is almost the same. Keywords: gas chromatography, retention time


We studied the fatty acid composition of some oils and established its effect on the processes of melting and crystallization. The melting and crystallization processes were investigated by differential scanning calorimetry (DSC). To study the correlation between phase transitions and fatty acid composition, the following vegetable oils were used: sesame, corn, soybean, sunflower, coconut and jojoba. The first four oils have different fatty acid content, polyunsaturated fatty acids account for more than 50%. The presence of three phase transformations and inversion of the melting and crystallization peaks are observed in the DSC diagrams for these four oils. Coconut oil contains 93.39% of saturated fatty acids and two peaks of phase transformations are observed in the DSC diagram of melting and crystallization processes. This can be explained by the fact that the total amount of fatty acids C12:0 and C14:0 is 67.14%. Jojoba oil contains 93.89% of monounsaturated fatty acids, and 62.20% of them are presented by gondoic fatty acid (C20:1). The DSC diagram of jojoba oil exhibits one characteristic peak of phase transformation. The obtained results allow establishing a certain correlation between the parameters of fatty acid composition and DSC diagrams.


Sign in / Sign up

Export Citation Format

Share Document