scholarly journals Preparation and characterization of penicillin acylase immobilized on sepabeads EC-EP carrier

2007 ◽  
Vol 13 (4) ◽  
pp. 205-210 ◽  
Author(s):  
Milena Zuza ◽  
Slavica Siler-Marinkovic ◽  
Zorica Knezevic

This paper reports the covalent immobilization of penicillin G acylase from E. coli on Sepabeads EC-EP, an epoxy-activated polymethacrylic carrier, and describes the properties of the immobilized enzyme. Due to its versatility to mediate hydrolysis of penicillins and semi-synthetic B-lactam antibiotics synthesis reactions, the selected enzyme belongs to a class of biocatalysts of great industrial interest. The immobilized enzyme was characterized in its pH and thermal stability and reaction kinetics. The immobilization of penicillin acylase resulted in a slightly different pH activity profile and temperature optima, indicating that the immobilization by this method imparted the structural and conformational stability to this enzyme. The immobilized enzyme also retained a high catalytic activity and showed the increased thermal stability compared with a free enzyme. By comparison of decimal reduction time values obtained at 50?C, it can be concluded that the immobilized enzyme was approximately 5-fold more stable than a free enzyme. The immobilization procedure developed is quite simple and easily reproduced, and provides a promising solution for the application of penicillin acylase for the purpose of 6-aminopenicillanic acid production.

2011 ◽  
Vol 65 (4) ◽  
pp. 431-437 ◽  
Author(s):  
Milena Zuza ◽  
Nenad Milosavic ◽  
Zorica Knezevic-Jugovic

Penicillin acylase (PAC) is an important industrial enzyme for the production of many ?-lactam antibiotics. It is capable of catalyzing the hydrolysis of penicillin G (Pen G) to generate phenylacetic acid (PAA) and 6-aminopenicillanic acid (6-APA). In this paper, in order to prevent enzyme inactivation, an attempt of coupling enzyme modification and immobilization was presented. Chemical modification was promoted to introduce carbohydrate moiety into the PAC molecule, capable of being covalently linked to an amino support. This seems to provide a possibility to couple the enzyme without risking a reaction at the active site which might cause a loss of activity. PAC molecules were modified by cross-linking with polyaldehyde derivatives of alginate in order to add them new and useful functions. Immobilization of alginate-PAC on Sepabeads EC-HA was used as a model system in order to demonstrate the potential of this strategy. Optimal conditions for covalent immobilization of alginate-PAC from Escherichia coli on support Sepabeads EC-HA, were investigated. The immobilized enzyme was then characterized by evaluating the potential effects of immobilization on its thermal stability, temperature and pH profile in comparison with native non-modified PAC and modified non-immobilized PAC. The maximum amount of the alginate-PAC coupled on the dry support of 99 mg/g was satisfactory. Deactivation rate constants at 50 ?C for free PAC, alginate-PAC and alginate-PAC immobilized on Sepabeads EC-HA were 2,32; 50,65 and 1,68 h-1, respectively. Alginate-PAC and alginate-PAC immobilized on Sepabeads EC-HA had the same pH and temperature optimum as the native non-modified PAC.


2007 ◽  
pp. 173-182 ◽  
Author(s):  
Milena Zuza ◽  
Slavica Siler-Marinkovic ◽  
Zorica Knezevic

This paper describes the covalent immobilization of penicillin G acylase from Escherichia coli on sepabeads EC-EP, an epoxy-activated polymethacrylic carrier and kinetic properties of the immobilized enzyme. The selected enzyme belongs to a class of biocatalysts whose industrial interest is due to their versatility to mediate hydrolysis of penicillins and semi-synthetic ?-lactam antibiotics synthesis reactions. About 2.7 mg of the pure enzyme was immobilized onto each gram of sepabeads with an enzyme coupling yield of 96.9%. However, it seems that the activity coupling yield is not correlated with the amount of enzyme bound and the maximum yield of 89.4% can be achieved working at low enzyme loading (0.14 mg g-1). Immobilization of the penicillin acylase resulted in slightly different pH activity profile and temperature optima, indicating that the immobilization by this method imparted structural and conformational stability of this enzyme. It appears that both free and immobilized penicillin acylase followed simple Michaelis-Menten kinetics, implying the same reaction mechanism in both systems.


2009 ◽  
Vol 63 (2) ◽  
Author(s):  
Milena Žuža ◽  
Nenad Milosavić ◽  
Zorica Knežević-Jugović

AbstractAn approach to stable covalent immobilization of chemically modified penicillin G acylase from Escherichia coli on Sepabeads® carriers with high retention of hydrolytic activity and thermal stability is presented. The two amino-activated polymethacrylate particulate polymers with different spacer lengths used in the study were Sepabeads® EC EA and Sepabeads® EC HA. The enzyme was first modified by cross-linking with polyaldehyde derivatives of starch in order to provide it with new useful functions. Such modified enzyme was then covalently immobilized on amino supports. The method seems to provide a possibility to couple the enzyme without risking a reaction at the active site which might cause the loss of activity. Performances of these immobilized biocatalysts were compared with those obtained by the conventional method with respect to activity and thermal stability. The thermal stability study shows that starch-PGA immobilized on Sepabeads EC-EA was almost 4.5-fold more stable than the conventionally immobilized one and 7-fold more stable than free non-modified PGA. Similarly, starch-PGA immobilized on Sepabeads EC-HA was around 1.5- fold more stable than the conventionally immobilized one and almost 9.5-fold more stable than free non-modified enzyme.


Clay Minerals ◽  
2020 ◽  
Vol 55 (2) ◽  
pp. 120-131
Author(s):  
Yonca Avci Duman ◽  
A. Uğur Kaya ◽  
Çiğdem Yağci

AbstractIn this study, for the first time Bacillus methylotrophicus Y37 cellulase was purified and recovered in a single step by three-phase partitioning (TPP). The optimal purification parameters for TPP were 40% ammonium sulfate saturation (m/v) with a 1.0:1.0 (v/v) ratio of crude extract:t-butanol, which gave 5.8-fold purification with 155% recovery of cellulase. Non-covalent immobilization of the partitioned cellulase was performed using bentonite as a support material. The activity observed in the 20th experiment was 100%. The optimal pH values and temperatures determined for the free enzyme and the immobilized enzyme were 5.0 and 6.0 and 45°C and 50°C, respectively. The Arrhenius activation energy (Ea) of the immobilized enzyme was lower than that of the free enzyme, whereas the Michaelis–Menten constant (Km) and maximum velocity (Vm) of the immobilized enzyme increased. The turnover number (kcat) and the catalytic performance (kcat/Km) demonstrated the improved catalytic properties of the immobilized enzyme compared to the free enzyme. Immobilization of cellulase is thermodynamically preferred.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Mehdi Mogharabi ◽  
Nasser Nassiri-Koopaei ◽  
Maryam Bozorgi-Koushalshahi ◽  
Nastaran Nafissi-Varcheh ◽  
Ghodsieh Bagherzadeh ◽  
...  

Alginate-gelatin mixed gel was applied to immobilized laccase for decolorization of some synthetic dyes including crystal violet. The immobilization procedure was accomplished by adding alginate to a gelatin solution containing the enzyme and the subsequent dropwise addition of the mixture into a stirred CaCl2solution. The obtained data showed that both immobilized and free enzymes acted optimally at 50°C for removal of crystal violet, but the entrapped enzyme showed higher thermal stability compared to the free enzyme. The immobilized enzyme represented optimum decolorization at pH 8. Reusability of the entrapped laccase was also studied and the results showed thatca. 85% activity was retained after five successive cycles. The best removal condition was applied for decolorization of seven other synthetic dyes. Results showed that the maximum and minimum dye removal was related to amido black 10B and eosin, respectively.


2007 ◽  
Vol 72 (12) ◽  
pp. 1255-1263 ◽  
Author(s):  
Khaled Ahmed ◽  
Nenad Milosavic ◽  
Milica Popovic ◽  
Radivoje Prodanovic ◽  
Zorica Knezevic ◽  
...  

?-Glucosidase from S. cerevisiae was covalently immobilized onto Sepabeads EC-EA by the glutaraldehyde method. An analysis of the variables controlling the immobilization process is first presented and it is shown that the highest coupling of ?-glucosidase occurred within 24 h. Also, a loading of 30 mg/g support proved to be effective, resulting in a rather high activity of around 45 U g-1 with a satisfactory degree of enzyme fixed. Both free and immobilized enzymes were then characterized by determining the activity profile as a function of pH, temperature and thermal stability. The obtained immobilized preparation showed the same optimum pH, but a higher optimum temperature compared with the soluble one. In addition, the immobilized enzyme treated at 45 ?C for 1 h still retained an activity of around 20 %, whereas the free enzyme completely lost its original activity under this condition. In conclusion, the developed immobilization procedure is quite simple, easily reproducible and provides a promising solution for the application of immobilized ?-glucosidase.


2019 ◽  
Vol 15 (3) ◽  
pp. 296-303 ◽  
Author(s):  
Swapnil Gaikwad ◽  
Avinash P. Ingle ◽  
Silvio Silverio da Silva ◽  
Mahendra Rai

Background: Enzymatic hydrolysis of cellulose is an expensive approach due to the high cost of an enzyme involved in the process. The goal of the current study was to apply magnetic nanomaterials as a support for immobilization of enzyme, which helps in the repeated use of immobilized enzyme for hydrolysis to make the process cost-effective. In addition, it will also provide stability to enzyme and increase its catalytic activity. Objective: The main aim of the present study is to immobilize cellulase enzyme on Magnetic Nanoparticles (MNPs) in order to enable the enzyme to be re-used for clean sugar production from cellulose. Methods: MNPs were synthesized using chemical precipitation methods and characterized by different techniques. Further, cellulase enzyme was immobilized on MNPs and efficacy of free and immobilized cellulase for hydrolysis of cellulose was evaluated. Results: Enzymatic hydrolysis of cellulose by immobilized enzyme showed enhanced catalytic activity after 48 hours compared to free enzyme. In first cycle of hydrolysis, immobilized enzyme hydrolyzed the cellulose and produced 19.5 ± 0.15 gm/L of glucose after 48 hours. On the contrary, free enzyme produced only 13.7 ± 0.25 gm/L of glucose in 48 hours. Immobilized enzyme maintained its stability and produced 6.15 ± 0.15 and 3.03 ± 0.25 gm/L of glucose in second and third cycle, respectively after 48 hours. Conclusion: This study will be very useful for sugar production because of enzyme binding efficiency and admirable reusability of immobilized enzyme, which leads to the significant increase in production of sugar from cellulosic materials.


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 983
Author(s):  
Wahhida Latip ◽  
Victor Feizal Knight ◽  
Ong Keat Khim ◽  
Noor Azilah Mohd Kasim ◽  
Wan Md Zin Wan Yunus ◽  
...  

Immobilization is a method for making an enzyme more robust in the environment, especially in terms of its stability and reusability. A mutant phosphotriesterase (YT PTE) isolated from Pseudomonas dimunita has been reported to have high proficiency in hydrolyzing the Sp and Rp-enantiomers of organophosphate chromophoric analogs and therefore has great potential as a decontamination agent and biosensor. This work aims to investigate the feasibility of using Fuller’s earth (FE) as a YT PTE immobilization support and characterize its biochemical features after immobilization. The immobilized YT PTE was found to show improvement in thermal stability with a half-life of 24 h compared to that of the free enzyme, which was only 8 h. The stability of the immobilized YT PTE allowed storage for up to 4 months and reuse for up to 6 times. The immobilized YT PTE showed high tolerance against all tested metal ions, Tween 40 and 80 surfactants and inorganic solvents. These findings showed that the immobilized YT PTE became more robust for use especially with regards to its stability and reusability. These features would enhance the future applicability of this enzyme as a decontamination agent and its use in other suitable industrial applications.


Sign in / Sign up

Export Citation Format

Share Document