scholarly journals CO2 emission from combustion of lignite, waste plastics and biomass mixture pellets

2019 ◽  
Vol 25 (3) ◽  
pp. 239-246
Author(s):  
Neslihan Duranay

Combustion is a familiar technique for disposal of urban wastes such as plastics when their recycling is impractical. It offers energy recycling and waste diminution. In this paper, combustion behaviours of blend pellets composed of binary and triple mixtures of plastic wastes, biomass and lignite in a laboratoryscale fixed-bed combustion system were examined. The materials chosen as waste plastic, biomass and lignite were, respectively, market plastic bags, furniture plant waste powder and Bing?l Karl?ova lignite. The effect of varied blend pellet composition on the combustion behaviour and CO2 emission in flue gas during combustion was examined. It was observed that the rate and efficiency of combustion increased with increasing plastic ratio in the blend pellets. It was found that the amount of carbon increased with the ratio of waste plastics added to blends, which also increased the CO2 ratio in the flue gas during the volatile matter combustion period. It was concluded that burning waste plastic bags with low-quality lignite or waste biomass could be a viable option to get rid of them and to gain energy.

2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Saša Papuga ◽  
Igor Musić ◽  
Petar Gvero ◽  
Ljiljana Vukić

Most plastic materials are non-biodegradable. Thus, disposing of such materials in landfills is undesirable, not only because of environmental concerns but also because of relevant EU policies requiring a certain degree of recycling and reuse of plastic materials. Furthermore, significant quantities of biomass waste, particularly waste sawdust as a consequence of intensive wood processing, represents another problem. Co-pyrolysis techniques have received much attention in recent years because they provide an alternative way to dispose of and convert waste plastic and biomass into high value feedstock and fuels. Recent investigations have shown that biomass and plastic co-pyrolysis achieve a synergistic effect, in the form of increased yield of liquid products, and the improvement of the overall process efficiency. This paper presents the results of technical analysis of waste plastics, waste biomass and mixtures biomass/plastic in the ratio 1:1; 3:1 and 1:3. The most common types of plastic waste in municipal waste: high density polyethylene, polypropylene and polystyrene, as well as two distinctive types of biomass, sawdust beech and spruce sawdust were selected for this investigation. The following parameters were determined: moisture, ash, coke residue, bonded carbon, volatile matter and combustible materials. During the test, the conditions of pyrolysis were simulated, in order to observe the changes of volatile substances in a mixture of biomass/plastic in comparison to theoretically expected values. The results of conducted measurements show that there is an increase in volatile matter, in all the mixtures and their ratios. The largest deviation of volatile matter in relation to the expected theoretical values was observed in the mixtures of sawdust beech/ polystyrene in the ratio 1:1.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Munique Gonçalves Guimarães ◽  
Rafael Benjamin Werneburg Evaristo ◽  
Augusto César de Mendonça Brasil ◽  
Grace Ferreira Ghesti

AbstractThe present work analyzed the energy generation potential of Buriti (Mauritia flexuosa L. f.) by thermochemical reactions. The experimental part of the study performed immediate analyses, elemental analyses, lignocellulosic analysis, thermogravimetric analysis, calorific values, and syn gas concentrations measurements of the gasification of Buriti in a fixed-bed reactor. Additionally, numerical simulations estimated the syn gas concentrations of the gasification reactions of Buriti. The immediate analysis showed that Buriti has the highest ash content (4.66%) and highest volatile matter content (85%) compared to other Brazilian biomass analyzed, but the higher heating value was only 18.28 MJ.kg−1. The elemental analysis revealed that the oxygen to carbon ratio was 0.51 while hydrogen to carbon ratio was 1.74, indicating a good thermal conversion efficiency. The Lignocellulosic analysis of Buriti resulted in a high content of holocellulose (69.64%), a lignin content of 28.21% and extractives content of 7.52%. The thermogravimetry of the Buriti indicated that the highest mass loss (51.92%) occurred in a temperature range between 150 °C and 370 °C. Lastly, the experimental gasification study in a fixed-bed updraft gasifier resulted in syn gas concentrations of 14.4% of CO, 11.5% of CO2 and 17.5% of H2 while the numerical simulation results confirmed an optimal equivalence ratio of 1.7 to maximize CO and H2 concentrations. Therefore, based on the results presented by the present work, the gasification process is adequate to transform Buriti wastes into energy resources. Graphic abstract


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 54
Author(s):  
Vairavel Parimelazhagan ◽  
Gautham Jeppu ◽  
Nakul Rampal

The adsorption of Congo red (CR), an azo dye, from aqueous solution using free and immobilized agricultural waste biomass of Nelumbo nucifera (lotus) has been studied separately in a continuous fixed-bed column operation. The N. nucifera leaf powder adsorbent was immobilized in various polymeric matrices and the maximum decolorization efficiency (83.64%) of CR occurred using the polymeric matrix sodium silicate. The maximum efficacy (72.87%) of CR dye desorption was obtained using the solvent methanol. Reusability studies of free and immobilized adsorbents for the decolorization of CR dye were carried out separately in three runs in continuous mode. The % color removal and equilibrium dye uptake of the regenerated free and immobilized adsorbents decreased significantly after the first cycle. The decolorization efficiencies of CR dye adsorption were 53.66% and 43.33%; equilibrium dye uptakes were 1.179 mg g–1 and 0.783 mg g–1 in the third run of operation with free and immobilized adsorbent, respectively. The column experimental data fit very well to the Thomas and Yoon–Nelson models for the free and immobilized adsorbent with coefficients of correlation R2 ≥ 0.976 in various runs. The study concludes that free and immobilized N. nucifera can be efficiently used for the removal of CR from synthetic and industrial wastewater in a continuous flow mode. It makes a substantial contribution to the development of new biomass materials for monitoring and remediation of toxic dye-contaminated water resources.


2016 ◽  
Vol 20 (2) ◽  
pp. 731-741 ◽  
Author(s):  
Sasa Papuga ◽  
Petar Gvero ◽  
Ljiljana Vukic

Author(s):  
D. Gowrishankar ◽  
G.D. Kumar ◽  
R. Prithviraj ◽  
V. Sanjay ◽  
D. Hariharan ◽  
...  

Plastics are an integral part of our lives and the production of plastics has drastically increased over the years, because of its vast range of applications and usage. Due to this the accumulation of waste plastics has also increased in time. The waste plastic generated in India is 15000 tons per day (as per survey). The breakdown of plastics requires around 500 years in the earth and these waste plastics affect the humans, animals, birds, earth and environment. The demand for conventional fuel has also increased lately and the quantity of this fuel reserve has decreased simultaneously. The extensive usage of the conventional fuels has paved the path for alternative ways for energy sources and alternate fuels. The extraction of waste plastic oil is obtained by the process of pyrolysis which is nothing but the thermochemical decomposition of organic matter without oxygen. The extracted plastic pyrolysis oil is then blended with diesel which helps in reducing the consumption of diesel fuel. Different blend ratios are prepared consisting of the extracted waste plastic pyrolysis oil and diesel fuel. These fuels are tested in the engine to understand the variation in the engine performance and emissions with the help of a gas analyser. By this way, the suitable blend ratio is selected for further works. This blend of fuel can exhibit high thermal efficiency and increases machine efficiency. The fuel does not emit sulphur dioxide (SO2) and the residue obtained is only 5 percent which is said to be carbon.


Sign in / Sign up

Export Citation Format

Share Document