scholarly journals Toward deep neural networks: Mirror extreme learning machines for pattern classification

Filomat ◽  
2020 ◽  
Vol 34 (15) ◽  
pp. 4985-4996
Author(s):  
Bolin Liao ◽  
Chuan Ma ◽  
Meiling Liao ◽  
Shuai Li ◽  
Zhiguan Huang

In this paper, a novel type of feed-forward neural network with a simple structure is proposed and investigated for pattern classification. Because the novel type of forward neural network?s parameter setting is mirrored with those of the Extreme Learning Machine (ELM), it is termed the mirror extreme learning machine (MELM). For the MELM, the input weights are determined by the pseudoinverse method analytically, while the output weights are generated randomly, which are completely different from the conventional ELM. Besides, a growing method is adopted to obtain the optimal hidden-layer structure. Finally, to evaluate the performance of the proposed MELM, abundant comparative experiments based on different real-world classification datasets are performed. Experimental results validate the high classification accuracy and good generalization performance of the proposed neural network with a simple structure in pattern classification.

2012 ◽  
Vol 608-609 ◽  
pp. 564-568 ◽  
Author(s):  
Yi Hui Zhang ◽  
He Wang ◽  
Zhi Jian Hu ◽  
Meng Lin Zhang ◽  
Xiao Lu Gong ◽  
...  

Extreme learning machine (ELM) is a new and effective single-hidden layer feed forward neural network learning algorithm. Extreme learning machine only needs to set the number of hidden layer nodes of the network, and there is no need to adjust the neural network input weights and the hidden units bias, and it generates the only optimum solution, so it has the advantage of fast learning and good generalization ability. And the back propagation (BP) neural network is the most maturely applied. This paper has introduced the extreme learning machine into the wind power prediction. By comparing the wind power prediction method using the BP neural network. Study shows that the extreme learning machine has better prediction accuracy and shorter model training time.


2014 ◽  
Vol 989-994 ◽  
pp. 3679-3682 ◽  
Author(s):  
Meng Meng Ma ◽  
Bo He

Extreme learning machine (ELM), a relatively novel machine learning algorithm for single hidden layer feed-forward neural networks (SLFNs), has been shown competitive performance in simple structure and superior training speed. To improve the effectiveness of ELM for dealing with noisy datasets, a deep structure of ELM, short for DS-ELM, is proposed in this paper. DS-ELM contains three level networks (actually contains three nets ): the first level network is trained by auto-associative neural network (AANN) aim to filter out noise as well as reduce dimension when necessary; the second level network is another AANN net aim to fix the input weights and bias of ELM; and the last level network is ELM. Experiments on four noisy datasets are carried out to examine the new proposed DS-ELM algorithm. And the results show that DS-ELM has higher performance than ELM when dealing with noisy data.


2017 ◽  
Vol 261 ◽  
pp. 83-93 ◽  
Author(s):  
Yongjiao Sun ◽  
Yuangen Chen ◽  
Ye Yuan ◽  
Guoren Wang

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Zhike Zhao ◽  
Xiaoguang Zhang

An improved classification approach is proposed to solve the hot research problem of some complex multiclassification samples based on extreme learning machine (ELM). ELM was proposed based on the single-hidden layer feed-forward neural network (SLFNN). ELM is characterized by the easier parameter selection rules, the faster converge speed, the less human intervention, and so on. In order to further improve the classification precision of ELM, an improved generation method of the network structure of ELM is developed by dynamically adjusting the number of hidden nodes. The number change of the hidden nodes can serve as the computational updated step length of the ELM algorithm. In this paper, the improved algorithm can be called the variable step incremental extreme learning machine (VSI-ELM). In order to verify the effect of the hidden layer nodes on the performance of ELM, an open-source machine learning database (University of California, Irvine (UCI)) is provided by the performance test data sets. The regression and classification experiments are used to study the performance of the VSI-ELM model, respectively. The experimental results show that the VSI-ELM algorithm is valid. The classification of different degrees of broken wires is now still a problem in the nondestructive testing of hoisting wire rope. The magnetic flux leakage (MFL) method of wire rope is an efficient nondestructive method which plays an important role in safety evaluation. Identifying the proposed VSI-ELM model is effective and reliable for actually applying data, and it is used to identify the classification problem of different types of samples from MFL signals. The final experimental results show that the VSI-ELM algorithm is of faster classification speed and higher classification accuracy of different broken wires.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Qian Leng ◽  
Honggang Qi ◽  
Jun Miao ◽  
Wentao Zhu ◽  
Guiping Su

One-class classification problem has been investigated thoroughly for past decades. Among one of the most effective neural network approaches for one-class classification, autoencoder has been successfully applied for many applications. However, this classifier relies on traditional learning algorithms such as backpropagation to train the network, which is quite time-consuming. To tackle the slow learning speed in autoencoder neural network, we propose a simple and efficient one-class classifier based on extreme learning machine (ELM). The essence of ELM is that the hidden layer need not be tuned and the output weights can be analytically determined, which leads to much faster learning speed. The experimental evaluation conducted on several real-world benchmarks shows that the ELM based one-class classifier can learn hundreds of times faster than autoencoder and it is competitive over a variety of one-class classification methods.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Xinran Zhou ◽  
Zijian Liu ◽  
Congxu Zhu

To apply the single hidden-layer feedforward neural networks (SLFN) to identify time-varying system, online regularized extreme learning machine (ELM) with forgetting mechanism (FORELM) and online kernelized ELM with forgetting mechanism (FOKELM) are presented in this paper. The FORELM updates the output weights of SLFN recursively by using Sherman-Morrison formula, and it combines advantages of online sequential ELM with forgetting mechanism (FOS-ELM) and regularized online sequential ELM (ReOS-ELM); that is, it can capture the latest properties of identified system by studying a certain number of the newest samples and also can avoid issue of ill-conditioned matrix inversion by regularization. The FOKELM tackles the problem of matrix expansion of kernel based incremental ELM (KB-IELM) by deleting the oldest sample according to the block matrix inverse formula when samples occur continually. The experimental results show that the proposed FORELM and FOKELM have better stability than FOS-ELM and have higher accuracy than ReOS-ELM in nonstationary environments; moreover, FORELM and FOKELM have time efficiencies superiority over dynamic regression extreme learning machine (DR-ELM) under certain conditions.


Author(s):  
He Wang

Artificial Neural Network (ANN) with its self-learning capabilities, nonlinear mapping ability and generalization ability, has been widely applied for fault diagnosis of complex system like Nuclear Power Plant (NPP). In this paper, an overview of the application of supervised multi-layer feed-forward neural network for fault diagnosis of NPP is presented, including the following aspects: the acquisition of the training sample data, the determination of appropriate input and output data, the choice of hidden layer structure and the evaluation of network model performance. Finally, a number of key issues about the engineering application of neural network fault diagnosis in practice were discussed.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 90 ◽  
Author(s):  
Jose Salmeron ◽  
Antonio Ruiz-Celma

This research proposes an Elliot-based Extreme Learning Machine approach for industrial thermal processes regression. The main contribution of this paper is to propose an Extreme Learning Machine model with Elliot and Symmetric Elliot activation functions that will look for the fittest number of neurons in the hidden layer. The methodological proposal is tested on an industrial thermal drying process. The thermal drying process is relevant in many industrial processes such as the food industry, biofuels production, detergents and dyes in powder production, pharmaceutical industry, reprography applications, textile industries and others. The methodological proposal of this paper outperforms the following techniques: Linear Regression, k-Nearest Neighbours regression, Regression Trees, Random Forest and Support Vector Regression. In addition, all the experiments have been benchmarked using four error measurements (MAE, MSE, MEADE, R 2 ).


2021 ◽  
Vol 38 (4) ◽  
pp. 1229-1235
Author(s):  
Derya Avci ◽  
Eser Sert

Marble is one of the most popular decorative elements. Marble quality varies depending on its vein patterns and color, which are the two most important factors affecting marble quality and class. The manual classification of marbles is likely to lead to various mistakes due to different optical illusions. However, computer vision minimizes these mistakes thanks to artificial intelligence and machine learning. The present study proposes the Convolutional Neural Network- (CNN-) with genetic algorithm- (GA) Wavelet Kernel- (WK-) Extreme Learning Machine (ELM) (CNN–GA-WK-ELM) approach. Using CNN architectures such as AlexNet, VGG-19, SqueezeNet, and ResNet-50, the proposed approach obtained 4 different feature vectors from 10 different marble images. Later, Genetic Algorithm (GA) was used to optimize adjustable parameters, i.e. k, 1, and m, and hidden layer neuron number in Wavelet Kernel (WK) – Extreme Learning Machine (ELM) and to increase the performance of ELM. Finally, 4 different feature vector parameters were optimized and classified using the WK-ELM classifier. The proposed CNN–GA-WK-ELM yielded an accuracy rate of 98.20%, 96.40%, 96.20%, and 95.60% using AlexNet, SequeezeNet, VGG-19, and ResNet-50, respectively.


Sign in / Sign up

Export Citation Format

Share Document