A Review of Neural Network Application for Fault Diagnosis of NPP

Author(s):  
He Wang

Artificial Neural Network (ANN) with its self-learning capabilities, nonlinear mapping ability and generalization ability, has been widely applied for fault diagnosis of complex system like Nuclear Power Plant (NPP). In this paper, an overview of the application of supervised multi-layer feed-forward neural network for fault diagnosis of NPP is presented, including the following aspects: the acquisition of the training sample data, the determination of appropriate input and output data, the choice of hidden layer structure and the evaluation of network model performance. Finally, a number of key issues about the engineering application of neural network fault diagnosis in practice were discussed.

Author(s):  
Tamer Emara

The IEEE 802.16 system offers power-saving class type II as a power-saving algorithm for real-time services such as voice over internet protocol (VoIP) service. However, it doesn't take into account the silent periods of VoIP conversation. This chapter proposes a power conservation algorithm based on artificial neural network (ANN-VPSM) that can be applied to VoIP service over WiMAX systems. Artificial intelligent model using feed forward neural network with a single hidden layer has been developed to predict the mutual silent period that used to determine the sleep period for power saving class mode in IEEE 802.16. From the implication of the findings, ANN-VPSM reduces the power consumption during VoIP calls with respect to the quality of services (QoS). Experimental results depict the significant advantages of ANN-VPSM in terms of power saving and quality-of-service (QoS). It shows the power consumed in the mobile station can be reduced up to 3.7% with respect to VoIP quality.


Author(s):  
Manjula A. Sutagundar ◽  
Basavaprabhu G. Sheeparamatti ◽  
Dakshayani S. Jangamshetti

This article describes how modeling is an integral part of design and development of any system that provides the theoretical characterization of the system and helps in understanding the relations between various parameters of the system, before the system is developed. The capability of an Artificial Neural Network (ANN) to model the complex relations between a set of inputs and outputs is exploited to model the motional resistance and resonance frequency for a contour mode disk resonator. The solution was to develop a multilayer feed forward neural network. The data set required to train the ANN is obtained by developing an electrical equivalent model and through the MEMS simulation software Coventorware. The network is trained using a Levenberg Marquardt algorithm. The number of hidden layers and the number of neurons in each hidden layer is optimized using a genetic algorithm. The ANN model developed an efficient model of the motional resistance and resonance frequency of the disk resonator. The ANN output is compared with the output of an electrical equivalent model and a reported fabricated structure.


2022 ◽  
pp. 471-489
Author(s):  
Tamer Emara

The IEEE 802.16 system offers power-saving class type II as a power-saving algorithm for real-time services such as voice over internet protocol (VoIP) service. However, it doesn't take into account the silent periods of VoIP conversation. This chapter proposes a power conservation algorithm based on artificial neural network (ANN-VPSM) that can be applied to VoIP service over WiMAX systems. Artificial intelligent model using feed forward neural network with a single hidden layer has been developed to predict the mutual silent period that used to determine the sleep period for power saving class mode in IEEE 802.16. From the implication of the findings, ANN-VPSM reduces the power consumption during VoIP calls with respect to the quality of services (QoS). Experimental results depict the significant advantages of ANN-VPSM in terms of power saving and quality-of-service (QoS). It shows the power consumed in the mobile station can be reduced up to 3.7% with respect to VoIP quality.


2013 ◽  
Vol 694-697 ◽  
pp. 1110-1113
Author(s):  
Guang Hui Wang ◽  
Qiu Ping Ren

SOM neural network is of strong non-linearity mapping capacity and flexible network structure. Use this algorithm for training, form a scientific and rational classification of training samples, which draw the corresponding cause of the malfunction. Use a diesel engine system fault diagnosis model is established and the related parameters as the training sample, SOM network input layer neuron number parameter dimension 8, competition with 10 ×10 layer structure to establish the diagnosis model, through the simulation test, verify the validity and practicability of SOM neural network in fault diagnosis


Filomat ◽  
2020 ◽  
Vol 34 (15) ◽  
pp. 4985-4996
Author(s):  
Bolin Liao ◽  
Chuan Ma ◽  
Meiling Liao ◽  
Shuai Li ◽  
Zhiguan Huang

In this paper, a novel type of feed-forward neural network with a simple structure is proposed and investigated for pattern classification. Because the novel type of forward neural network?s parameter setting is mirrored with those of the Extreme Learning Machine (ELM), it is termed the mirror extreme learning machine (MELM). For the MELM, the input weights are determined by the pseudoinverse method analytically, while the output weights are generated randomly, which are completely different from the conventional ELM. Besides, a growing method is adopted to obtain the optimal hidden-layer structure. Finally, to evaluate the performance of the proposed MELM, abundant comparative experiments based on different real-world classification datasets are performed. Experimental results validate the high classification accuracy and good generalization performance of the proposed neural network with a simple structure in pattern classification.


Author(s):  
Mohd. Tauseef ◽  
Dheeraj Kumar Verma

The surface roughness of manufactured product is final results of the turning technique parameters, and an critical characteristics that outline product first-rate, aesthetics etc. It imposes one of the most essential constraints for the choice of machines and slicing parameters in manner planning. In this paper, Artificial Neural Network (ANN) method has been used to develop surface roughness prediction model the use of experimental statistics, wherein Feed Forward Neural Network (FFNN) the usage of Back Propagation set of rules and Levenberg-Marquardt education function has been used. The work has been done using Neural etwork Toolbox in MATLAB. The overall performance of the version has been assessed based totally on Regression analysis, Mean Square Error (MSE) and Magnitude of Relative Error (MRE). A three-2-1 model with two neurons in the hidden layer turned into discovered to be the excellent developed model, having universal regression ( R) cost of zero.9923 and pleasant validation overall performance MSE value of 0.00913. The ANN model confirmed incredible consequences for forecasting


Author(s):  
Yu Mu ◽  
Hong Xia

The technology of real-time fault diagnosis for NPP has great significance to improve the safety and economy of reactor. At present, expert system, artificial neural network (ANN) and support vector machine (SVM) algorithms are most widely used in the field of NPP fault diagnosis. According to the shortcomings of expert systems, ANN and SVM, the decision tree algorithm is applied in the field of NPP fault diagnosis in this paper. ID3 and C4.5 are applied separately to learn from training samples which are the typical faults of NPP, and diagnose using the acquired knowledge. Then the diagnostic results are compared with the results of SVM method. The results show that: comparing with SVM, decision tree has the advantages of much faster training speed and a little higher accuracy. Furthermore, decision tree can obtain rules from the sample set, so it has good explanatory ability for the diagnostic results.


Author(s):  
Fabrice Fouet ◽  
Pierre Probst

In nuclear safety, the Best-Estimate (BE) codes may be used in safety demonstration and licensing, provided that uncertainties are added to the relevant output parameters before comparing them with the acceptance criteria. The uncertainty of output parameters, which comes mainly from the lack of knowledge of the input parameters, is evaluated by estimating the 95% percentile with a high degree of confidence. IRSN, technical support of the French Safety Authority, developed a method of uncertainty propagation. This method has been tested with the BE code used is CATHARE-2 V2.5 in order to evaluate the Peak Cladding Temperature (PCT) of the fuel during a Large Break Loss Of Coolant Accident (LB-LOCA) event, starting from a large number of input parameters. A sensitivity analysis is needed in order to limit the number of input parameters and to quantify the influence of each one on the response variability of the numerical model. Generally, the Global Sensitivity Analysis (GSA) is done with linear correlation coefficients. This paper presents a new approach to perform a more accurate GSA to determine and to classify the main uncertain parameters: the Sobol′ methodology. The GSA requires simulating many sets of parameters to propagate uncertainties correctly, which makes of it a time-consuming approach. Therefore, it is natural to replace the complex computer code by an approximate mathematical model, called response surface or surrogate model. We have tested Artificial Neural Network (ANN) methodology for its construction and the Sobol′ methodology for the GSA. The paper presents a numerical application of the previously described methodology on the ZION reactor, a Westinghouse 4-loop PWR, which has been retained for the BEMUSE international problem [8]. The output is the first maximum PCT of the fuel which depends on 54 input parameters. This application outlined that the methodology could be applied to high-dimensional complex problems.


The implementation of neural network for the fault diagnosis is to improve the dependability of the proposed scheme by providing a more accurate, faster diagnosis relaying scheme as compared with the conventional relaying schemes. It is important to improve the relaying schemes regarding the shortcoming of the system and increase the dependability of the system by using the proposed relaying scheme. It also provide more accurate, faster relaying scheme. It also gives selective schemes as compared to conventional system. The techniques for survey employed some methods for the collection of data which involved a literature review of journals, from review on books, newspaper, magazines as well as field work, additional data was collected from researchers who are working in this field. To achieve optimum result we have to improve following things: (i) Training time, (ii) Selection of training vector, (iii) Upgrading of trained neural nets and integration of technologies. AI with its promise of adaptive training and generalization deserves scope. As a result we obtain a system which is more reliable, more accurate, and faster, has more dependability as well as it will selective according to the proposed relaying scheme as compare to the conventional relaying scheme. This system helps us to reduce the shortcoming like major faults which we faced in the complex system of transmission lines which will helps in reducing human effort, saves cost for maintaining the transmission system.


Sign in / Sign up

Export Citation Format

Share Document