scholarly journals Efficiency limits in photovoltaics: Case of single junction solar cells

2014 ◽  
Vol 27 (4) ◽  
pp. 631-638 ◽  
Author(s):  
Marko Jost ◽  
Marko Topic

The conversion efficiency of solar energy into electrical energy is the most important parameter when discussing solar cells, photovoltaic (PV) modules or PV power plants. So far many papers have been written to address the limiting efficiency of solar cells, the theoretical maximum conversion efficiency an ideal solar cell could achieve. However, most of the researches modelled sun?s spectrum as a blackbody which does not represent a realistic case. In this paper we have calculated the limiting efficiency as a function of absorbers band gap at standard test conditions using the solar spectrum AM1.5. In addition, the other key solar cells performance parameters (open-circuit voltage, short-circuit current density and fill factor) are evaluated while the intrinsic losses in the solar cells are also explained and presented in light of a cell temperature.

2013 ◽  
Vol 665 ◽  
pp. 330-335 ◽  
Author(s):  
Ripal Parmar ◽  
Dipak Sahay ◽  
R.J. Pathak ◽  
R.K. Shah

The solar cells have been used as most promising device to convert light energy into electrical energy. In this paper authors have attempted to fabricate Photoelectrochemical solar cell with semiconductor electrode using TMDCs. The Photoelectrochemical solar cells are the solar cells which convert the solar energy into electrical energy. The photoelectrochemical cells are clean and inexhaustible sources of energy. The photoelectrochemical solar cells are fabricated using WSe2crystal and electrolyte solution of 0.025M I2, 0.5M NaI, 0.5M Na2SO4. Here the WSe2crystals were grown by direct vapour transport technique. In our investigations the solar cell parameters like short circuit current (Isc) and Open circuit voltage (Voc) were measured and from that Fill factor (F.F.) and photoconversion efficiency (η) are investigated. The results obtained shows that the value of efficiency and fill factor of solar cell varies with the illumination intensities.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Hwen-Fen Hong ◽  
Tsung-Shiew Huang ◽  
Wu-Yih Uen ◽  
Yen-Yeh Chen

We performed accelerated tests on sealed and nonsealed InGaP/InGaAs/Ge triple-junction (TJ) solar cells in a complex high temperature and high humidity environment and investigated the electrical properties over time. The degradation of energy conversion efficiency in nonsealed cells was found to be more serious than that in sealed cells. The short-circuit current (ISC), open-circuit voltage (VOC), and fill factor (FF) of sealed cells changed very slightly, though the conversion efficiency decreased 3.6% over 500 h of exposure. This decrease of conversion efficiency was suggested to be due to the deterioration of silicone encapsulant. TheISC,VOC, and FF of nonsealed cells decreased with increasing exposure time. By EL and SEM analysis, the root causes of degradation can be attributed to the damage and cracks near the edge of cells induced by the moisture ingress. It resulted in shunt paths that lead to a deterioration of the conversion efficiency of solar cell by increasing the leakage current, as well as decreasing open-circuit voltage and fill factor of nonsealed solar cells.


1986 ◽  
Vol 70 ◽  
Author(s):  
S. Yamazaki ◽  
M. Abe ◽  
S. Nagayama ◽  
K. Shibata ◽  
M. Susukida ◽  
...  

ABSTRACTPIN-structure small-area solar cells using a-Si have been frequently reported on, but only a few reports are available on the study of solar cells using a large-area (10-cm square) substrate, all with a resultant conversion efficiency of above 9.0 %[1,2]. Our study has been concentrated on solar cells using a batch of ten 10-cm square substrates with an average conversion efficiency of 9.5 % or more.As a result, without an anti-reflection coating on the surface of the glass substrate, the following values have been obtained: average conversion efficiency (EFF)=9.63 % (standard deviation of 0.195 %) -Open-circuit voltage (Voc)=12.668 V (standard deviation of 0.215 V) -Short-circuit current (Isc)=78.467 mA (standard deviation of 1.619 mA) -Fill factor (FF)=0.6672 (standard deviation of 0.009)The process, equipment and methods for measurements through which these results were obtained are described below.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2336 ◽  
Author(s):  
Sirona Valdueza-Felip ◽  
Rodrigo Blasco ◽  
Javier Olea ◽  
Alba Díaz-Lobo ◽  
Alejandro F. Braña ◽  
...  

We investigate the photovoltaic performance of solar cells based on n-AlxIn1−xN (x = 0–0.56) on p-Si (100) hetero-junctions deposited by radio frequency sputtering. The AlxIn1−xN layers own an optical bandgap absorption edge tuneable from 1.73 eV to 2.56 eV within the Al content range. This increase of Al content results in more resistive layers (≈10−4–1 Ω·cm) while the residual carrier concentration drops from ~1021 to ~1019 cm−3. As a result, the top n-contact resistance varies from ≈10−1 to 1 MΩ for InN to Al0.56In0.44N-based devices, respectively. Best results are obtained for devices with 28% Al that exhibit a broad external quantum efficiency covering the full solar spectrum with a maximum of 80% at 750 nm, an open-circuit voltage of 0.39 V, a short-circuit current density of 17.1 mA/cm2 and a conversion efficiency of 2.12% under air mass 1.5 global (AM1.5G) illumination (1 sun), rendering them promising for novel low-cost III-nitride on Si photovoltaic devices. For Al contents above 28%, the electrical performance of the structures lessens due to the high top-contact resistivity.


2012 ◽  
Vol 164 ◽  
pp. 158-161
Author(s):  
Chun Liang Zhong ◽  
L.E. Luo ◽  
Y.Q. Xia

The effect of the interface states on the properties of (p+) a-Si:H/(n) c-Si heterojunction solar cells is studied by a set of simulations. The results show that there is almost no effect on the short-circuit current. At very low interface states, there is almost no effect on the open-circuit voltage VOC and the fill factor FF, and then the conversion efficiency. Although, at high interface states, VOC decreases due to the decrease of the excess minority carrier density at the c-Si neutral region and the increase of the effective interface recombination velocity at the heterojucntion interface, which also results in the decrease of FF. In particular, at very high interface states, the hole transport is limited by the interface potential barrier, which results in S-shaped J–V characteristics and low fill factors. As a result, the conversion efficiency decreases with interface states increasing at high interface states.


2019 ◽  
Vol 966 ◽  
pp. 501-506
Author(s):  
Ahmad Sholih ◽  
Dadan Hamdani ◽  
Sigit Tri Wicaksono ◽  
Mas Irfan P. Hidayat ◽  
Yoyok Cahyono ◽  
...  

In this paper, we have investigated the effect of the work function of transparent conducting oxides (TCO) on the performance of a-Si:H p-i-n solar cells, including open circuit voltage (VOC), short circuit current (JSC), fill factor (FF) and conversion efficiency, using AFORS-HET software. The simulation has focused on two layers: front contact work function (ΦTCO-front) and back contact work function (ΦTCO-back) with various band from 4.7 eV to 5.3 eV and 4.2 eV to 4.9 eV respectively. From the simulation results, we know that the work function of TCO greatly affects the performance of solar cells such as Voc, Jsc, FF and conversion efficiency. By optimization, we arrive at results for Voc, Jsc, FF and conversion efficiencies of 0.88 V, 8.95 mA / cm2, 65% and 5.1% respectively. This result is obtained on ΦTCO-front 5.2 eV. When ΦTCO-front 5.2 eV, the value of VOC, FF and conversion efficiency has been saturated, while the value of the J sc actually begins to decrease. Furthermore, when the ΦTCO - back is 4.3 eV, we get the best results for VOC, Jsc, FF and conversion Efficiency of 0.9 V, 8.96 mA / cm2, 73 % and 5.9 % respectively. When ΦTCO-back 4.3 eV, the value of VOC, FF and conversion efficiency begins to decrease, while the value of the Jsc does’t change significantly. These optimizations may help in producing low cost high efficiency p-i-n solar cells experimentally.


2015 ◽  
Vol 29 (25n26) ◽  
pp. 1542050 ◽  
Author(s):  
Qiufan Chen ◽  
Xiaonan Sun ◽  
Anping Liu ◽  
Qifeng Zhang ◽  
Guozhong Cao ◽  
...  

This paper reports the synthesis, detailed structural characterization of aggregated [Formula: see text] nanotubes and the application of such aggregated [Formula: see text] nanotubes as photoelectrodes in solar cells (dye sensitized DSCs). A maximum overall conversion efficiency of 7.9% has been achieved, which use conventional dyes without any additional chemical treatments under circumstances of an open-circuit voltage of 710 mV, a short-circuit current density of [Formula: see text], and a fill factor of 66%. This impressive performance is believed to attribute to the micron-sized aggregate structure which may be favorable for light harvesting, the desired high specific surface area and pure anatase phase for dye absorption. This significant improvement in the conversion efficiency indicates that DSCs based on aggregated [Formula: see text] nanotubes are a promising alternative to semiconductor-based solar cells.


2021 ◽  
Vol 12 (6) ◽  
pp. 7478-7487

This study presents the simulations of a hybrid Cu2ZnSnS4-based solar cell with a planar heterojunction structure in a hybrid model (n-FTO/n-ZnO/p-PSCS/p-CZTS/p-PSCS/p-HTM) using a One-Dimensional Solar cell capacitance simulator (SCAPS-1D). . The configuration "121" of the hybridizing absorber layers of the device was simulated and related with as-Copper Zinc Tin Sulphide (CZTS). The simulation used an absorber layer with a step-length thickness of 25 nm and thicknesses ranging from 100 nm to 500 nm. The bandgap diagram, I-V characteristics curve, percentage conversion efficiencies, and the quantum efficiencies of the simulated solar cells were calculated and constructed from simulated results. The percentage conversion efficiency of 22.57%, fill factor of 49.99%, open-circuit voltage of 0.80V, and short circuit current of 25.12 mAcm-2 were obtained. The obtained photon conversion efficiency shows that the hybridization of different absorber layers was achievable. It was also established that the performance efficiencies of hybrid CZTS structure in terms of optimum thickness and sandwiched Perovskite Solar cells model (FTO/ZnO/CZTS/PSCS/CZTS/HTM) has the same efficiencies for "121 configurations". On the other hand, the efficiencies of as- CZTS structures were higher than the PSCS configuration, which might be due to SCAPS-1D as it was originally designed for Thin Films Solar cells.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
N. T. R. N. Kumara ◽  
Piyasiri Ekanayake ◽  
Andery Lim ◽  
Mohammad Iskandar ◽  
Lim Chee Ming

We have studied the performance of dye sensitized solar cells sensitized with pigments extracted from the fruit sheath of Nephelium lappaceum (F: Sapindaceae). The pH of the pigment solution used for impregnation was controlled by adding concentrated HCl (50:0.2 v/v). The UV-Vis spectroscopic results revealed that the extract consists of the pigment of Anthocyanin, with an additional absorption peak appearing around 540 nm at a lower pH of the pigment solution. Also the band gap of the pigment was reduced by 1 eV at low pH conditions. The solar cells fabricated with pigment extracted from the fruit sheath of Nephelium lappaceum showed photo-response with the conversion efficiency of 0.26%, with an open-circuit voltage (VOC) of 453 mV, short-circuit current density (ISC) of 1.17 mA cm−2, and fill factor (ff) of 0.48. The conversion efficiency was significantly enhanced when pH of the pigment solution was lowered by adding concentrated HCl. The conversion efficiency of the dye sensitized solar cells (DSSCs) sensitized after HCl treatment of the pigment was increased to 0.56%, with an open-circuit voltage (VOC) of 404 mV, short-circuit current density (ISC) of 2.71 mA cm−2, and fill factor (ff) of 0.35. The HOMO level of the pigment at low pH was shown to be shifted towards more positive values with respect to vacuum level, giving rise to an enhanced DSSC efficiency. The overall efficiency enhancement of the low pH pigment was due to the combined effect of increased UV-Vis absorption and efficient adsorption of dye molecules onto the TiO2 semiconductor surface.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1684
Author(s):  
Alessandro Romeo ◽  
Elisa Artegiani

CdTe is a very robust and chemically stable material and for this reason its related solar cell thin film photovoltaic technology is now the only thin film technology in the first 10 top producers in the world. CdTe has an optimum band gap for the Schockley-Queisser limit and could deliver very high efficiencies as single junction device of more than 32%, with an open circuit voltage of 1 V and a short circuit current density exceeding 30 mA/cm2. CdTe solar cells were introduced at the beginning of the 70s and they have been studied and implemented particularly in the last 30 years. The strong improvement in efficiency in the last 5 years was obtained by a new redesign of the CdTe solar cell device reaching a single solar cell efficiency of 22.1% and a module efficiency of 19%. In this paper we describe the fabrication process following the history of the solar cell as it was developed in the early years up to the latest development and changes. Moreover the paper also presents future possible alternative absorbers and discusses the only apparently controversial environmental impacts of this fantastic technology.


Sign in / Sign up

Export Citation Format

Share Document