scholarly journals Quaternary tectonic and depositional evolution of eastern Srem (northwest Serbia)

2014 ◽  
pp. 43-57 ◽  
Author(s):  
Marinko Toljic ◽  
Drazenko Nenadic ◽  
Uros Stojadinovic ◽  
Tivadar Gaudenyi ◽  
Katarina Bogicevic

The area of eastern Srem is situated in the southern periphery of the Pannonian basin. Its depositional evolution during the Neogene and the Quaternary has been controlled by tectonic processes. Miocene extensional subsidence was followed by the Pliocene-Quaternary inversion of the basin. The latter was accomplished as the result of replacement of the tensile by the compressive stress field. Since the Late Neogene, the regional tectonic activity has been controlled by compressive stress produced by the northnortheastern propagation of the Adria microplate. In the compressive NE-SW-oriented stress field, the recent structural plan of the Pannonian basin and its wider environment, including its southern periphery, was reactivated. The youngest tectonic deformations are characterized by positive and negative vertical motions of large intrabasinal segments and basinal periphery, resulting in the final inversion of the basin. The effects of the basinal inversion can be recognized in genetic features of Quaternary sediments and geomorphological characteristics of the relief. Sources of data used for the interpretation of the Quaternary tectonic activity in the area of eastern Srem are of geological, geomorphological, thermochronological, and geophysical character. The positions of prominent fault structures have been ascertained by remote sensing, interpretations of available geophysical cross-sections, and using the field data.

2013 ◽  
Vol 275-277 ◽  
pp. 1393-1397 ◽  
Author(s):  
Jian Qiang Xiao ◽  
Long Fa Luan ◽  
Jian Guo Wang

To study the dynamic response rule of the western slope in Buzhaoba under explosion, a vibrational wave was imposed on the slope. The FLAC3D program was utilized to simulate the rule. The distribution of stress field and the response of velocity were analyzed after blasting. The simulation result shows that the compressive stress increase step by step with the increase of the depth of slope, and as the elevation increases, the particle velocity appears an amplification effect, and the slope is mainly affected by the self-weight stress, and the blasting has little effect on the slope.


1987 ◽  
Vol 133 ◽  
pp. 123-132
Author(s):  
A Steenfelt

Geochemical maps and geochemical cross-sections, based on chemical analyses of the < 0.1 mm fraction of stream sediment samples collected at a density of approximately 1 sample per 30 km2 in central and western North Greenland, show that the distribution patterns for the major elements and some trace elements reflect the main lithological units of the North Greenland Palaeozoic platform and trough. By contrast the distribution patterns for S and Sr are different. High S values are correlated with zones of tectonic activity and are thought to indicate migration of H2S along faults. High Sr values are correlated with evaporitic rocks in the platform sequence and with deep sea carbonates. High BaO values occurring along the Silurian platform margin and in the Ordovician platform-slope sequence are the result of Ba enrichment in the sedimentary environment, combined with epigenetic vein-type baryte mineralisation.


Author(s):  
Kento Obuchi ◽  
Mutsumi Miyagawa ◽  
Hitoshi Nakamura ◽  
Yusuke Kishi ◽  
Takumi Ozawa

2020 ◽  
Vol 222 (1) ◽  
pp. 153-168 ◽  
Author(s):  
Elizabeth S Cochran ◽  
Robert J Skoumal ◽  
Devin McPhillips ◽  
Zachary E Ross ◽  
Katie M Keranen

SUMMARY The orientations of faults activated relative to the local principal stress directions can provide insights into the role of pore pressure changes in induced earthquake sequences. Here, we examine the 2011 M 5.7 Prague earthquake sequence that was induced by nearby wastewater disposal. We estimate the local principal compressive stress direction near the rupture as inferred from shear wave splitting measurements at spatial resolutions as small as 750 m. We find that the dominant azimuth observed is parallel to previous estimates of the regional compressive stress with some secondary azimuths oriented subparallel to the strike of the major fault structures. From an extended catalogue, we map ten distinct fault segments activated during the sequence that exhibit a wide array of orientations. We assess whether the five near-vertical fault planes are optimally oriented to fail in the determined stress field. We find that only two of the fault planes, including the M   5.7 main shock fault, are optimally oriented. Both the M 4.8 foreshock and M   4.8 aftershock occur on fault planes that deviate 20–29° from the optimal orientation for slip. Our results confirm that induced event sequences can occur on faults not optimally oriented for failure in the local stress field. The results suggest elevated pore fluid pressures likely induced failure along several of the faults activated in the 2011 Prague sequence.


2001 ◽  
Vol 80 (3-4) ◽  
pp. 297-304 ◽  
Author(s):  
S. Vandycke ◽  
Y. Quinif

AbstractThis paper presents observations of recent faulting activity in the karstic network of the Rochefort Cave (Namur Province, Belgium, Europe). The principal recent tectonic features are bedding planes reactivated as normal faults, neo-formatted normal faults in calcite flowstone, fresh scaling, extensional features, fallen blocks and displacement of karstic tube. The seismo-tectonic aspect is expanded by the presence of fallen blocks where normally the cavity must be very stable and in equilibrium. Three main N 070° fault planes and a minor one affect, at a decimetre scale, the karst features and morphology. The faults are still active because recent fresh scaling and fallen blocks are observable. The breaking of Holocene soda straw stalactites and displacements of artificial features observed since the beginning of the tourist activity, in the last century, also suggest very recent reactivation of these faults. This recent faulting can be correlated to present-day tectonic activity, already evidenced by earthquakes in the neighbouring area. Therefore, karstic caves are favourable sites for the observation and the quantification of recent tectonic activity because they constitute a 3-D framework, protected from erosion. Fault planes with this recent faulting present slickensides. Thus a quantitative analysis in term of stress inversion, with the help of striated faults, has permitted to reconstruct the stress tensor responsible for the brittle deformation. The principal NW-SE extension (σ3 horizontal) is nearly perpendicular to that of the present regional stress as illustrated by the analysis of the last strong regional earthquake (Roermond, The Netherlands) in 1992. During the Meso-Cenozoic, the main stress tectonics recorded in this part of the European platform is similar to the present one with a NE-SW direction of extension.The discrepancy between the regional stress field and the local stress in the Rochefort cave can be the result of the inversion of the σ2 and σ3 axes of the stress ellipsoid due to its symmetry or of a local modification at the ground surface of the crustal stress field as it has been already observed in active zones.


1975 ◽  
Vol 12 (11) ◽  
pp. 1929-1933
Author(s):  
W. C. Barnes ◽  
J. V. Ross

A large block of Upper Paleozoic limestone at Blind Creek near Keremeos, B.C. was emplaced by dry gravity sliding, probably associated with uplift related to nearby Eocene volcanism. The block is a nearly flat tabular unit, exposed over an area of 650 m by 1300 m, and is separated from underlying chaotic breccias derived from adjacent Paleozoic rocks and from Eocene volcanic flow rocks by a sole fault. The block comprises two lithologically and tectonically distinct units, a lower imbricated unit consisting of several slices repeating the same sequence of strata, separated from an upper unit of massive limestone by a low-angle fault. Within the imbricated unit, early faults emanate from lenticular masses of breccia along the sole, become increasingly steeper upward, and are truncated above by the upper low angle fault. Associated minor folds and fractures have a clockwise sense of rotation. Later fractures and associated minor folds have the opposite dip and sense of rotation. These two subsets comprise a conjugate set whose inferred compressive stress direction coincides with the present overall dip direction of the entire mass.The northwesterly adjacent autochthonous Olalla limestone, or a similar body now buried by younger units, is a likely source for the Blind Creek allochthon.Absence of any structures within the limestone indicative of ductile deformation contrasts markedly with those of the highly deformed rocks of the Old Tom and Shoemaker Formations, the Kobau Group, and the nearby gneisses of the western Shuswap Complex.


Sign in / Sign up

Export Citation Format

Share Document