scholarly journals Genetic diversity and combining abilities for root traits of sugar beet pollinators

Genetika ◽  
2013 ◽  
Vol 45 (2) ◽  
pp. 361-368
Author(s):  
Zivko Curcic ◽  
Nevena Nagl ◽  
Ksenija Taski-Ajdukovic ◽  
Dario Danojevic ◽  
Zeljka Stojakovic ◽  
...  

Information about genetic diversity and combining abilities of sugar beet parental components are of a great importance for hybrid creation. The aim of this research was to evaluate genetic diversity among sugar beet pollinators from different breeding programs and their combining abilities for main root traits of sugar beet, root weight, sugar content and sugar yield. As plant material were used eight pollinators originating from three different USDA-ARS breeding programs and four from Institute of field and vegetable crops Novi Sad. The analysis of variance and Duncan?s multiple range test revealed significant differences (p = 0.05) among pollinators for all investigated traits. Pollinator CR10 differs from all others in terms of quantitative traits and in terms of combining ability. Despite small root weight CR10 had significantly positive GCA for that trait and showed that genotypes with small root should not be automatically discarded. Pollinators from Institute of field and vegetable crops used in this research had negative GCA for root weight and should be used only as hosts for introduction of new germplasm in future breeding program.

2019 ◽  
Vol 65 (No. 1) ◽  
pp. 41-45
Author(s):  
Beata Michalska-Klimczak ◽  
Zdzislaw Wyszyňski ◽  
Vladimír Pačuta ◽  
Marek Rašovský ◽  
Joanna Lešniewska

The impact of non-treated and primed seeds on molasses components, sugar content and technological white sugar yield of the same cultivar of sugar beet root was investigated. The study was conducted in 2012–2014 at the Experiment Field Station of Warsaw University of Life Sciences – SGGW in Skierniewice (51°97'N, 20°19'E) in the central region of Poland. The use of primed seeds resulted in a higher technological white sugar yield with higher sugar content and lower content of α-amino nitrogen in the roots. Also, seed priming increased the technological value of the roots by a lower share in the root yield fractions of the root weight less than 300 g, characterized by lower sugar content and a higher content of α-amino nitrogen.


2012 ◽  
pp. 102-109
Author(s):  
Suzana Kristek ◽  
Andrija Kristek ◽  
Dragana Kocevski ◽  
Antonija K. Jankovi ◽  
Dražen Juriši

The experiment was set up on two types of the soil: Mollic Gleysols (FAO, 1998) and Eutric Cambisols where the presence of pathogenic fungi – sugar beet root decay agent – Rhizoctonia solani has been detected since 2005. In a two year study (2008, 2009), the experiment was set up by completely randomized block design in 4 repetitions and 16 different variants. Two beet varieties, Belinda, sensitive to pathogenic fungi R. solani, and Laetitia, tolerant to pathogenic fungi R. solani), were grown. The microbiological preparation BactoFil was applied in different amounts in autumn and spring. In addition, the nitrogen fertilizer application, based on the results of soil analysis, was varied. The following parameters were tested: amount of infected and decayed plants, root yield, sugar content, sugar in molasses and sugar yield. The best results were obtained by applying the microbiological preparation BactoFil, and by 30% reduced nitrogen fertilizer application. Preparation dosage and time of application depended on soil properties.


2021 ◽  
Vol 36 ◽  
pp. 03017
Author(s):  
A.S. Avilov ◽  
N.Ya. Shmyreva ◽  
A.A. Zavalin ◽  
O.A. Sokolov

The studies were carried out under the conditions of a microfield experiment on typical chernozem (Belgorod region) with two soils (pH 5.0 and 6.5) with the addition of urea (enriched in 15N, 17.1 at. %) And effluents from a pig-breeding complex (PSC) at doses of 6 and 12 g N/m2 (against the background of phosphate and potash fertilizers, P6K6). The largest amount of nitrogen was consumed by sugar beets with the combined introduction of CCA and urea (25.8 g N/m2). When the soil was acidified to pHsalt 5.0, the consumption of nitrogen in mineral fertilizers decreased by 15-18%, soil ni-trogen – by 21-52%, and waste nitrogen – by 16%. At the same time, the immobilization of nitrogen in the fertilizer decreased by 13-18%, and the loss of gaseous nitrogen compounds increased by 47-108%. The effluent from the pig-breeding complex increased the immobilization of nitrogen in mineral fertilizers (by 38-46%) and reduced gaseous nitrogen losses (by 22-44%). The highest stability and productivity (root crop yield 1654 g/m2, tops yield 239 g/m2) was exhibited by agrophytocenosis on soil with pH 6.5 with the combined application of CCA and urea. When the soil solution was acid-ified to pH 5.0, the yield of beet root crops decreased by 30% and the yield of tops – by 24%. On soil with pH 5.0, fertilizers increased the sugar content in root crops by 0.2-1.3%, on soil with pH 6.5, they decreased by 1.3-2.0%.


2011 ◽  
Vol 48 (No. 9) ◽  
pp. 418-423
Author(s):  
M. Antunović ◽  
D. Rastija ◽  
M. Pospišil

Aiming at determination differences in leaf and root potassium concentration of diverse sugar beet genotypes as well as its effect on sugar beet root quality and yield. Investigations comprising 15 sugar beet genotypes (five multigerm lines, five hybrids and five monogerm lines) were carried out on two soil types (Calcic luvisol: L-1 and L-3 and Calcic gleysol: L-2 and L-4) during two growing seasons. Root yield of the investigated genotypes on Calcic luvisol (50 t/ha) was higher, than on Calcic gleysol (34 t/ha). In general, multigerm lines were known for the highest leaf potassium concentration (2.75%), lowest root one (3.78 mmol/100 g root), highest sugar content (13.8%) and best root extractable sugar (1.5%). Monogerm lines had the lowest leaf potassium concentration (2.51%), highest root one (4.24 mmol/100 g root), lowest sugar content (12.9%), and the poorest extractable sugar (10.7%). Root yield of the investigated hybrids (48 t/ha) was higher by 16% compared to multigerm lines yield (42 t/ha) and as much as 35% higher compared to monogerm lines (36 t/ha). Sugar beet root potassium was in significantly negative correlation with sugar content at three localities (L-1: r = –0.485**, L-2: r = –0.096, L-3: r = –0.687**, L-4: r = –0.337**) whereas at all four localities it was in negative correlation with extractable sugar (L-1: r = –0.634**, L-2: r = –0.407**, L-3: r = –0.930**, L-4: r = –0.749**). Potassium concentration in sugar beet leaf was in significant positive correlation with sugar content at three localities (L-1: r = 0.382**, L-2: r = 0.231, L-3: r = 0.717**, L-4: r = 0.516**).


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 166 ◽  
Author(s):  
Jacek Żarski ◽  
Renata Kuśmierek-Tomaszewska ◽  
Stanisław Dudek

In Poland, under conditions of the moderate climate and transition between maritime and continental climates, the average rainfall totals of the growing season are in the range of 350–400 mm; however, they are distinguished by great temporal and spatial variability. Climatological studies demonstrate that the drought frequency is approximately 30%. Therefore, under such conditions, irrigation has a supplementary and intervention nature and is applied only when dry periods occur. The aim of this study was to determine the impact of sprinkler irrigation and increased nitrogen fertilization on the yield and quality of sugar beet roots and yield of sugar. The average increase of the yield under irrigation was 18.1 t·ha−1 which constituted a 22.8% increase in the yield. Furthermore, there was a marked tendency of a higher sugar content in the roots of irrigated plants. The absolute, relative, and unit average sugar beet root yield increases obtained under the influence of sprinkler irrigation and the lack of a significant diversity in the sugar content in roots confirm that irrigation contributed to an appropriate pace of plant growth and development. The increased rate of nitrogen fertilization (N2) of 160 kg N·ha−1 plus an additional 40 kg N·ha−1 resulted in the significantly greater root yields compared to the control (N1) (160 kg N·ha−1), i.e., an average of 7.6 t·ha−1 (9%). Based on the crop-water production function, the maximum root yields were obtained for the N1 rate at a total precipitation and irrigation amount of 382 mm, compared with 367 mm for the N2 rate.


1963 ◽  
Vol 95 (8) ◽  
pp. 863-873 ◽  
Author(s):  
A. M. Harper

AbstractIn southern Alberta the fundatrix of P. betae hatches from the overwintered egg in late April and early May and feeds on an emerging leaf of P. angustifolia or P. balsamifera, forming a gall. In the gall it produces alate fundatrigeniae, which migrate from the poplars to beets and produce apterous alienicolae. This form of the aphid reduces both yield and sugar content of beet roots. During the summer several generations of alienicolae are produced. In the fall most of the alienicolae produce sexuparae. These migrate from beets to poplars, where they produce males and oviparae. Each fertilized ovipara lays a single egg on the bark of a poplar tree. The species may overwinter as eggs on the poplars or as alienicolae in the soil. The egg has an obligatory diapause that is terminated by exposure to low temperature. The fungatrigeniae migrate from late June to mid-August and the sexuparae from early September to late October. The potential reproductive capacities of the fundatrix, fundatrigenia, sexupara, and ovipara averaged 163, 13, 6, and 1, respectively. Under greenhouse conditions 20 aphids (alienicolae) produced 9,000 in 6 weeks when the soil temperature was maintained at 27 °C. Below 15 °C. the rate of reproduction was low and death was caused by exposure to 30 °C. for 6 weeks. The most important predators of P. betae were the anthocorid A. antevolens, the flies S. bigelowi, L. pemphigae and T. glabra, and a coccinellid Scymnus sp.


2021 ◽  
Vol 181 (4) ◽  
pp. 93-101
Author(s):  
D. V. Sokolova

Background. While working with such cross-pollinated crops as sugar beet, the greatest problem is the fixation of valuable genotypes. Using apomixis to produce breeding material helps to accelerate the breeding process and save the desired combination of genes.Materials and methods. The research objects were 110 accessions of sugar beet from the VIR collection. Field experiments and assessments of the resistance to Cercospora leaf spot, monogermity, and non-bolting were performed according to VIR’s guidelines in 2016–2018 at Pushkin and Pavlovsk Laboratories of VIR and Maikop Experiment Station of VIR. The sugar level in roots was measured using an optical refractometer.Results. A comprehensive study of sugar beet accessions resulted in the development of apomictic lines with cytoplasmic male sterility, followed by an evaluation of their economically important characters. An extremely rare occurrence of biotypes with the 0-type sterility (less than 0.5%) was observed in the population. The seeds obtained from apomixis-prone lines demonstrated a significant difference during inbreeding from the seeds of fertile inbred genotypes: no inbreeding depression was observed in apomictic lines. Lines combining sterility and monogermity in their genotype were produced. Testing parent accessions and apomictic forms did not reveal significant differences in the sugar content and root yield, so the resulting forms can be efficiently used in future breeding programs.Conclusion. Using apomixis to develop sugar beet lines helped to fixate the sugar content level, biennial plant development cycle, and Cercospora leaf spot resistance. Thus, apomixis is promising for ensuring maternal inheritance and preserving the desired combination of genes in sugar beet, thereby accelerating the breeding process. 


2019 ◽  
pp. 265-276
Author(s):  
Ahmed Mohamed Abouzaytonh

A field experiment was carried out at the research station at Kufra production project in Kufra, located in the south-east of Libya, between latitude 12 - 24 ° north and longitude - 17 ° - 23 ° south, With the aim of knowing the impact of three agricultural dates (Mid-October, November, December) for three varieties (Nina-Gala-Engl. V) on yield and some of its components and the sugar content under the environmental conditions of Kufra, In the implementation of the experiment, a split - plot design was implemented with three replicates, The following characteristics were studied: Root weight - root diameter (cm) - fresh weight of root / plant - fresh weight / plant - root productivity and total fresh vegetables / ha , Sugar theoretical productivity T /h in the roots . Results showed that there was no significant difference between the cultivars for all the studied traits. The date of planting showed significant effect on all the studied traits. In general, it can be concluded that sugar beet cultivation can be successful under the environmental conditions of Kufra Mid-October.


2006 ◽  
pp. 27-35 ◽  
Author(s):  
Stevan Radivojevic ◽  
Irena Dosenovic

Environmental factor (location) influenced sugar beet root yield, which was higher by 20.6% on Belgrade location than on Pancevo location. However, when compared the genotype effect, smaller environmental influence was found for root yield, which was not expected. The investigated factors (variety and location) equally contributed to the variation in root sugar content. Significantly higher varietal influence was observed for granulated sugar yield, which was also unexpected. .


Sign in / Sign up

Export Citation Format

Share Document