scholarly journals Apomictic lines of sugar beet: development and studying

2021 ◽  
Vol 181 (4) ◽  
pp. 93-101
Author(s):  
D. V. Sokolova

Background. While working with such cross-pollinated crops as sugar beet, the greatest problem is the fixation of valuable genotypes. Using apomixis to produce breeding material helps to accelerate the breeding process and save the desired combination of genes.Materials and methods. The research objects were 110 accessions of sugar beet from the VIR collection. Field experiments and assessments of the resistance to Cercospora leaf spot, monogermity, and non-bolting were performed according to VIR’s guidelines in 2016–2018 at Pushkin and Pavlovsk Laboratories of VIR and Maikop Experiment Station of VIR. The sugar level in roots was measured using an optical refractometer.Results. A comprehensive study of sugar beet accessions resulted in the development of apomictic lines with cytoplasmic male sterility, followed by an evaluation of their economically important characters. An extremely rare occurrence of biotypes with the 0-type sterility (less than 0.5%) was observed in the population. The seeds obtained from apomixis-prone lines demonstrated a significant difference during inbreeding from the seeds of fertile inbred genotypes: no inbreeding depression was observed in apomictic lines. Lines combining sterility and monogermity in their genotype were produced. Testing parent accessions and apomictic forms did not reveal significant differences in the sugar content and root yield, so the resulting forms can be efficiently used in future breeding programs.Conclusion. Using apomixis to develop sugar beet lines helped to fixate the sugar content level, biennial plant development cycle, and Cercospora leaf spot resistance. Thus, apomixis is promising for ensuring maternal inheritance and preserving the desired combination of genes in sugar beet, thereby accelerating the breeding process. 

2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Agnė Sadauskienė ◽  
Zita Brazienė ◽  
Zenonas Dabkevičius

The research was conducted on 11 sugar beet varieties, grown at the Rumokai Experimental Station of the Lithuanian Research Center for Agriculture and Forestry, in 2016 and 2017. The experiments were carried out on two backgrounds: the crops were not sprayed and sprayed with fungicide epoxiconazole 125 g l–1. During the study years, rust (causative agent Uromyces beticola), powdery mildew (causative agent Erysiphe betae Vaňha Weltzien) and leaf spot disease (causative agent Cercospora beticola Sacc.) were the most prevalent in sugar beet. Rust, the intensity of which was 9.66–61.79%, caused most damage to sugar beet. The intensity of powdery mildew was 12.71–55.98% and that of leaf spot disease was 7.47–54.23%. Of the investigated varieties of sugar beet, the most sensitive to leaf spot disease were ‘Merens’, ‘Balear’, ‘Davinci’, ‘Kashmir’ and ‘Pottok’, the most resistant were ‘Berton’, ‘Selma KWS’ and ‘Wellington’. ‘Merens’ and ‘Texel’ were the most sensitive to rust. This disease was least damaging to the ‘Minta’, ‘Berton’ and ‘Strauss’ varieties. Powdery mildew was most harmful to leaves of the ‘Merens’, ‘Balear’ and ‘Minta’ varieties of sugar beet. The most resistant to powdery mildew was ‘Texel’. According to the average two-year data, the most productive was the ‘Pottok’ variety, whose root yield was 90.46– 93.85 t ha–1. The ‘Straus’ variety had the highest sugar content. Epoxiconazole increased the sugar beet yield from 0.44 to 6.53 t ha–1 in 2016 and from 0.07 to 11.63 t ha–1 in 2017.


2020 ◽  
Vol 12 (3) ◽  
pp. 711-718
Author(s):  
Mohammad R. ORAZIZADEH ◽  
Mostafa HOSSEINPOUR ◽  
Parviz FASAHAT

Sugar beet and sugarcane are two major crops for sugar extraction throughout the world. However, the sugar beet importance is not just about sugar production but it also plays an important role in crop rotation and increased productivity in various industries as well as livestock feed. In this study the long-term (2009-16) field trial effect of alfalfa (4 years)-winter wheat (1 year)–fallow (1year)-sugar beet rotation on yield and quality parameters of sugar beet were evaluated for two consecutive rotations. The field trials were carried out at single location in Karaj, Iran, using randomized complete block design with four replications. Analysis of variance showed that the seasonal factors influenced different traits. In the first and second rotations, the root yield ranged from about 56.5 to 83.2 and 61.4 to 77.8 t ha-1, respectively with significant difference among cultivars in the first rotation. However, no significant difference was observed among both rotations in terms of root yield. Same results were obtained for sugar yield in both rotations which illustrates the stability of the above-mentioned traits. Except for sugar content, significant difference was observed among other traits in both rotations. We show for the first time the effect of completing two rotation sequences on sugar beet performance and quality for decision making into a continual expansion/development of crop cultivation.


1974 ◽  
Vol 46 (3) ◽  
pp. 143-155
Author(s):  
Veikko Brummer ◽  
Erkki Aura

Preliminary determinations for NO3- and NH4-N in topsoil from nitrogen field experiments are discussed. The amounts of residual nitrogen as well as the dates and depth for sampling are considerd in order to investigate the need of fertilizer-N for continuous sugar beet. Tops ploughed down as manure increased the available soil nitrogen by about 50 kg/ha. In practice nitrogen from fertilizer and farmyard manure given to previous beet crops seems to accumulate in the beet soils of Finland. The concentrations of nitrate and ammonium nitrogen in topsoil were low in the spring of 1972 and 1973. NO3-N increased in topsoil during the early summer, and the highest concentrations were found at the beginning of July. Starting from the middle of July the amount of NH4-N began to increase both in topsoil and in subsoil. With increasing amounts of nitrogen in the topsoil the sugar content decreases continuously. Also the α-amio N content of beets correlates with the soil nitrogen. There is experimental evidence that 150 180 kg/ha nitrate nitrogen in topsoil (residual + fertilizer N) in early July gives the best economic result. The effects of fertilizer and accumulated soil nitrogen on the sugar beet quality together with som other experimental data have been statistically analysed. Regression coefficients indicated that both forms of nitrogen affected the suger content, the α-amino N concentration and clear juice purity, in a similar way.


Plant Disease ◽  
2016 ◽  
Vol 100 (7) ◽  
pp. 1364-1370 ◽  
Author(s):  
Carl A. Strausbaugh ◽  
Erik J. Wenninger ◽  
Imad A. Eujayl

Curly top in sugar beet caused by Beet curly top virus (BCTV) is an important yield-limiting disease that can be reduced via neonicotinoid and pyrethroid insecticides. The length of efficacy of these insecticides is poorly understood; therefore, field experiments were conducted with the seed treatment Poncho Beta (clothianidin at 60 g a.i. + beta-cyfluthrin at 8 g a.i. per 100,000 seed) and foliar treatment Asana (esfenvalerate at 55.48 g a.i./ha). A series of four experiments at different locations in the same field were conducted in 2014 and repeated in a neighboring field in 2015, with four treatments (untreated check, Poncho Beta, Asana, and Poncho Beta + Asana) which were arranged in a randomized complete block design with eight replications. To evaluate efficacy, viruliferous (contain BCTV strains) beet leafhoppers were released 8, 9, 10, or 11weeks after planting for each experiment, which corresponded to 1, 2, 3, and 4 weeks after Asana application. Over both years, in 30 of 32 observation dates for treatments with Poncho Beta and 14 of 16 observation dates for Asana, visual curly top ratings decreased an average of 41 and 24%, respectively, with insecticide treatments compared with the untreated check. Over both years, in eight of eight experiments for treatments with Poncho Beta and six of eight experiments for Asana, root yields increased an average of 39 and 32%, respectively, with treatment compared with the untreated check. Over both years, the Poncho Beta treatments increased estimated recoverable sucrose (ERS) yield by 75% compared with the untreated check for weeks 8 and 9. By week 10, only the Poncho Beta + Asana treatment led to increases in ERS in both years, while the influence of increasing host resistance may have made other treatments more difficult to separate. When considering curly top symptoms, root yield, and ERS among all weeks and years, there was a tendency for the insecticides in the Poncho Beta + Asana treatment to complement each other to improve efficacy.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Ivica Stancic ◽  
Jelica Zivic ◽  
Sasa Petrovic ◽  
Desimir Knezevic

This paper analyzes the impact of genes and proportional contribution of parental genotypes on the inheritance of root yield and sugar content in diploid hybrids of sugar beet. The survey included two diploid male-sterile monogerm lines and three single (SC) male-sterile hybrids as maternal components, while three multigerm diploids were used as pollinators. The partitioning of genotypic variance into additive and dominant components was performed by half sibling (HS) and full sibling (FS) covariance. The proportional contribution of individual components of crossbreeding (lines, testers, and interactions) was exhibited in the expression of certain characteristics of F1generation. Genotypic variance components showed a significant effect of nonadditive gene action (dominance) in the inheritance of root yield and sugar content, while the additive effect of genes was less significant. Maternal components had a greater proportional contribution to root yield, while lines, pollinators, and their interactions had an equal contribution to sugar content.


2020 ◽  
Vol 109 ◽  
pp. 101455
Author(s):  
Bahaa E.S. Abd El-Fatah ◽  
Mohamed Hashem ◽  
Kamal A.M. Abo-Elyousr ◽  
Hadeel M.M. Khalil Bagy ◽  
Saad A.M. Alamri

1999 ◽  
Vol 118 (4) ◽  
pp. 327-334 ◽  
Author(s):  
N. -O. Nilsson ◽  
M. Hansen ◽  
A. H. Panagopoulos ◽  
S. Tuvesson ◽  
M. Ehlde ◽  
...  

2011 ◽  
Vol 48 (No. 9) ◽  
pp. 418-423
Author(s):  
M. Antunović ◽  
D. Rastija ◽  
M. Pospišil

Aiming at determination differences in leaf and root potassium concentration of diverse sugar beet genotypes as well as its effect on sugar beet root quality and yield. Investigations comprising 15 sugar beet genotypes (five multigerm lines, five hybrids and five monogerm lines) were carried out on two soil types (Calcic luvisol: L-1 and L-3 and Calcic gleysol: L-2 and L-4) during two growing seasons. Root yield of the investigated genotypes on Calcic luvisol (50 t/ha) was higher, than on Calcic gleysol (34 t/ha). In general, multigerm lines were known for the highest leaf potassium concentration (2.75%), lowest root one (3.78 mmol/100 g root), highest sugar content (13.8%) and best root extractable sugar (1.5%). Monogerm lines had the lowest leaf potassium concentration (2.51%), highest root one (4.24 mmol/100 g root), lowest sugar content (12.9%), and the poorest extractable sugar (10.7%). Root yield of the investigated hybrids (48 t/ha) was higher by 16% compared to multigerm lines yield (42 t/ha) and as much as 35% higher compared to monogerm lines (36 t/ha). Sugar beet root potassium was in significantly negative correlation with sugar content at three localities (L-1: r = –0.485**, L-2: r = –0.096, L-3: r = –0.687**, L-4: r = –0.337**) whereas at all four localities it was in negative correlation with extractable sugar (L-1: r = –0.634**, L-2: r = –0.407**, L-3: r = –0.930**, L-4: r = –0.749**). Potassium concentration in sugar beet leaf was in significant positive correlation with sugar content at three localities (L-1: r = 0.382**, L-2: r = 0.231, L-3: r = 0.717**, L-4: r = 0.516**).


Sign in / Sign up

Export Citation Format

Share Document