scholarly journals The influence of non-ideal phase flow on the extraction efficiency for the case of a linear equilibrium distribution

2006 ◽  
Vol 42 (1) ◽  
pp. 67-80
Author(s):  
G. Tadic ◽  
M. Gligoric ◽  
A. Tolic

The influence of the fundamental parameters of non-ideal phase flow and the extraction parameters on the number of equilibrium stages - ND, theoretical stages - NT, as well as the number of stages (ND - NT), the existence of which is a consequence of the backflow in extractors, was investigated. The calculated number of stages (ND - NT) served as a measure of the influence of the denoted parameters on the extraction efficiency. The results of the investigation indicate that the number of stages (ND - NT) considerably increased with increasing backmixing coefficients and that the dependence was linear. It was established that the increase of the ratio of the flow rate of the heavy and light phase and the decrease of the equilibrium distribution coefficient, as well as the increase of the total separation factor, led to an exponential increase of the number of stages in the extractor, which consequently caused a decrease in the extraction efficiency.

1989 ◽  
Vol 54 (4) ◽  
pp. 981-989
Author(s):  
Ján Dojčanský ◽  
Soňa Bafrncová ◽  
Július Surový

On using five hypothetical systems differing in the extent of mutual solubility of components, tie-line slope, and type of binodal curve, the effect is evaluated of systematic errors in the form of absolute deviation in the liquid-liquid equilibrium distribution concentrations on the accuracy of calculated number of theoretical stages of isothermal countercurrent extraction under various operating conditions.


2016 ◽  
Vol 70 (6) ◽  
Author(s):  
Van T. Nguyen ◽  
Michael C. Bowyer ◽  
Ian A. van Altena ◽  
Christopher J. Scarlett

Abstractis known as a healing herb which has traditionally been used in the treatment of various diseases such as hepatitis, diabetes and cancer. The extraction parameters have great effects on the extraction efficiency of bioactive compounds and pharmacological activity of the extracts. This study sought to optimise the microwave-assisted extraction parameters for phenolic compounds-enriched extracts and antioxidant capacity from


2011 ◽  
Vol 291-294 ◽  
pp. 1339-1343
Author(s):  
Wen Bo Zhang ◽  
Hong Rui Li ◽  
Jun Tao ◽  
Bing Bing Dong

The research in this paper optimized the extraction technique of lentinan with ultrasonic assistant method on the basis of hot water extraction technique, and investigated the promoting function of ultrasound to polysaccharides extraction. Extraction condition was selected by means of orthogonal experimental design, four factors and three levels L9(34), after key elements were respectively chosen through single factor experiments. Comparison between optimal extraction parameters of two method, hot water extraction technique and ultrasonic assistant extraction technique, showed decreased extraction temperature and significantly shortened extraction time, which existed in the second means, improved the extraction efficiency. Lentinus edodes polysaccharide extracted with ultrasonic assistant technique, the extraction rate and polysaccharide content percentage increased 6.22% and 8.66% respectively, comparative to which extracted with hot water extraction technique.


Author(s):  
Jun Fang ◽  
Igor A. Bolotnov

Bubbly flow is quite common in various natural and engineering phenomena. In particular, nuclear engineers are interested in fundamental understanding of the bubbly flow behavior due to its importance in cooling light water reactor cores. Given the extreme conditions and complex support structures in nuclear reactor cores, it is very challenging to study the flow behavior using high-fidelity experiments. Typically validated computational codes are chosen as practical tools for the thermal-hydraulic and safety analyses. As the new generations of nuclear reactors are being developed, more advanced modeling techniques are required to design safe and efficient systems. Different from most simulation approaches, direct numerical simulation (DNS) employs no turbulence closure assumptions, which makes it a promising tool for model development. The major bottleneck of DNS was and remains to be the high computational cost, increasing exponentially with the Reynolds number. However, thanks to the on-going improvements in computer power, these computationally expensive simulations are becoming more and more affordable. Coupled with level-set interface tracking method (ITM), DNS can be used for the high-fidelity studies of two-phase bubbly flows with unprecedented details. Meanwhile, another concern that arises is how one can best take advantage of the ‘big data’ generated from large-scale DNS and translate it into new knowledge. The traditional level-set method utilizes a signed distance field to distinguish different phases while the interface is modeled by the zero level-set. Although level-set method can distinguish gas bubbles from the liquid phase, it cannot recognize and track individual bubbles which hinders the collection of useful bubble information. As a result, the bubble tracking capability has to be developed to improve the data extraction efficiency. In the present work, a marker field is created and advected for bubble distinction and extraction of detailed bubble parameters from the simulations. Each bubble in the flow gets assigned a unique ID, based on which the code will collect the corresponding bubble information. It has been demonstrated that bubble tracking capability can significantly improve the data extraction efficiency for level-set based two-phase flow simulations. Statistical analysis tools are also developed to post-process the recorded information about the bubbles to study the dependencies/correlations of bubble behavior with bubble local conditions. For example, in the pressurized water reactor (PWR) subchannel geometry investigated in this paper, bubbles are observed to experience different relative velocity when presenting at different distance from fuel rod surfaces. With proper grouping criterion, statistical analysis would allow introducing variable drag coefficient for bubbles based on their positions. These new insights are contributing to more accurate modeling of the multiphase computational fluid dynamic (M-CFD) simulations, and better prediction of two-phase flow behavior in engineering systems. Together with the analysis tools, bubble tracking capability will open a new door to study and understand two-phase flows.


EKSPLORIUM ◽  
2015 ◽  
Vol 36 (2) ◽  
pp. 109
Author(s):  
M.V. Purwani ◽  
Moch. Setyadji

Telah dilakukan ekstraksi konsentrat thorium oksalat hasil olah monasit memakai ekstraktan Tri – n - Oktil Posfin Oksida (TOPO).  Pengotor  yang paling banyak  terkandung dalam konsentrat thorium oksalat adalah cerium (Ce) dan lantanum (La).  Tujuan penelitian ini adalah untuk memurnikan thorium (Th) dengan memisahkan Ce dan La dengan cara ekstraksi. Ekstraksi dilakukan secara batch dan bertingkat.  Larutan umpan atau fase air adalah 10 gram konsentrat Th oksalat yang dilarutkan dalam 10,08 M HNO3 sehingga volume menjadi 100 mL dan fase organik adalah TOPO dalam kerosen.  Stripping setiap tingkat ekstraksi dilakukan tiga kali, yaitu stripping pertama memakai air, stripping kedua memakai asam oksalat 5%, dan stripping ketiga memakai air. Waktu ekstraksi setiap tingkat 15 menit dan waktu stripping setiap tingkat  5 menit dengan perbandingan fase air dengan fase organik adalah 1 berbanding 1.  Parameter yang diteliti  adalah persentase TOPO dalam kerosen dan jumlah tingkat ekstraksi. Pemakaian TOPO dalam kerosen yang optimum 5% dan jumah tingkat ekstraksi 3.  Pada ekstraksi I diperoleh konsentrat Ce dan pada tingkat ekstraksi II dan III diperoleh Th.  Efisiensi ekstraksi Th  tingkat II sebesar 39,76% dan efisiensi ekstraksi Th tingkat III 26,33%. Koefisien distribusi (Kd) Th tingkat ekstraksi II adalah 0,7587 dan Kd Th tingkat ekstraksi III  1,0096. Efisiensi ekstraksi Th total adalah  80,08 %, efisiensi ekstraksi Ce total  56,12%,  efisiensi ekstraksi La total  1,54.  Faktor pisah (FP) Th – Ce pada ekstraksi I adalah 1,00, FP Th – La pada ekstraksi I  92,07, FP Th – Ce pada ekstraksi II adalah 250,24 dan FP Th – La  pada ekstraksi II adalah ∞,  FP Th – Ce pada ekstraksi III 124,22 dan FP Th – La pada ekstraksi III adalah ∞. Faktor pisah total Th – Ce sebesar 1,4270 dan Faktor pisah total Th – La  47,0459. Kadar Th oksalat pada ekstraksi II sebesar 97,06%, kadar Th oksalat pada ekstraksi III  98,00 %. The extraction of thorium oxalate concentrate as processing product  of monazite using  Tri  Octyl Posfine Oxide  (TOPO) has been done.  The most impurities contained in thorium oxalate concentrate are Ce (cerium) and La (lanthanum). The purpose of this study is to purify Th by separating Ce and La using extraction process. The extraction is done by bacth and multistage. The solution of  feed or water phase is 10 grams of Th oxalate concentrate dissolved in 10.08 M HNO3 so that the volume becomes 100 mL and the organic phase is TOPO in kerosene. Stripping in each stage conducted three times, first stripping use water, second stripping use 5 % oxalic acid and the third stripping use water. Extraction time at every stage is 15 minutes and stripping time at every stage is 5 minutes with  ratio of aqueous phase to organic phase = 1 : 1 . The parameters were studied % TOPO - kerosene and number of extraction stage. The optimum usage of TOPO in kerosene is 5 %.  On extraction I obtained Ce concentrate and on extraction II and III obtained Th concentrates. The extraction II efficiency of Th is 39.76 % and extraction III efficiency of Th is 26.33 % . Coefficient of distribution (Kd) of Th in stage II is 0.7587 and Kd of Th in stage III is 1.0096.  Total extraction efficiency of Th is  80.08 %, total extraction efficiency of Ce is 56.12 %,  and total extraction efficiency of La is 1.54 %. The separation factor of  Th – Ce in extraction I  is 1.00 and separation factor of  Th – La in extraction I  is 92.0,  separation factor of  Th – Ce in extraction II  is 250.24, and separation  factor of  Th – La in extraction II  is ∞.  Separation factor of  Th – Ce in extraction III  is 124.22 and separation factor of  Th – La in extraction III  is  ∞.  Total  separation  factor of  Th – Ce  is 1.4270 and total separation factor of  Th – La is 4.0459.  The content of Th oxalate in stripping product from the extraction II is 97.06 % and in stripping product from  the extraction III is 98.00%.


2016 ◽  
Vol 8 (1) ◽  
pp. 405-411 ◽  
Author(s):  
V. Ramya ◽  
Udaykumar Nidoni ◽  
Sharangouda Hiregoudar ◽  
C. T. Ramachandra ◽  
J. Ashoka ◽  
...  

In the present study, supercritical fluid extraction (SFE) technology was applied to extract deoxynojirimycin (1-DNJ) from mulberry leaf powder using carbon dioxide (CO2) as major extraction solvent with ethanol as cosolvent, and extraction parameters such as pressure (100, 150 and 200 bar), temperature (40, 50 and 60 °C) anddynamic extraction time (40, 60 and 80 min) were systematically investigated by full factorial design to obtain the optimum extraction efficiency and extraction yield. Under optimized conditions (pressure of 200 bar, temperature of 50 °C and dynamic extraction time of 80 min), DNJ enriched extract was obtained with high extraction efficiency (96.46 %) and extraction yield (13.41 %), enabling this product to use for nutraceutical purpose. The results indicated that SC-CO2 extraction is a promising and alternative process for recovering the bioactive compounds from mulberry leaves.


Sign in / Sign up

Export Citation Format

Share Document