scholarly journals Analysis of nuclear glucocorticoid receptor-DNA interaction in aged rat liver

2005 ◽  
Vol 70 (5) ◽  
pp. 705-712 ◽  
Author(s):  
Miroslava Vujcic ◽  
Natasa Terzic ◽  
Aleksandra Ristic-Fira ◽  
Dusan Kanazir ◽  
Sabera Ruzdijic

Abstract: In order to contribute to the understanding of mechanisms by which regulatory proteins recognize genetic information stored in DNA, analyses of their interaction with specific nucleotides are usually performed. In this study, the electrophoretic mobility shift assay (EMSA) was applied to analyze the interaction of nuclear proteins from the liver of rats of different age i.e., young (3-month-old), middle- aged (12-month-old) and aged (24-month-old), with radioactively labelled synthetic oligonucleotide analogues, corresponding to GRE. The levels of GRE binding activity were assessed by quantitative densitometric scanning of the autoradiograms. The results showed statistically significant decreasing values of up to 78% and 49% in middle aged and old animals, respectively, compared to young animals (p < 0.05). The specificity of the nuclear proteins-GRE interaction was demonstrated by competition experiments with unlabelled GRE. In a supershift assay, using the antibody BuGR2, it was shown that the GR proteins present in nuclear extracts have a high affinity for the GRE probe. The stabilities of the protein-DNA complexes were analysed and it was concluded that they changed during ageing. .

Parasitology ◽  
2001 ◽  
Vol 123 (3) ◽  
pp. 301-308 ◽  
Author(s):  
C. H. MAK ◽  
R. C. KO

A novel DNA-binding peptide ofMr∼30 kDa was documented for the first time in the excretory–secretory (E–S) products of the infective-stage larvae ofTrichinella pseudospiralis.Larvae recovered from muscles of infected mice were maintained for 48 h in DMEM medium. E–S products of worms extracted from the medium were analysed for DNA-binding activity by the electrophoretic mobility shift assay (EMSA). Multiple DNA-protein complexes were detected. A comparison of theMrof proteins in the complexes indicated that they could bind to the target DNA as a dimer, tetramer or multiples of tetramers. Site selection and competition analysis showed that the binding has a low specificity. A (G/C-rich)-gap-(G/T-rich)-DNA sequence pattern was extracted from a pool of degenerate PCR fragments binding to the E–S products. Results of immunoprecipitation and electrophoretic mobility supershift assay confirmed the authenticity of the DNA-binding protein as an E–S product.


1994 ◽  
Vol 14 (6) ◽  
pp. 4251-4257
Author(s):  
D Dufort ◽  
A Nepveu

Studies of the c-myc promoter have shown that efficient transcription initiation at the P2 start site as well as the block to elongation of transcription require the presence of the ME1a1 protein binding site upstream of the P2 TATA box. Following fractionation by size exclusion chromatography, three protein-ME1a1 DNA complexes, a, b, and c, were detected by electrophoretic mobility shift assay. A cDNA encoding a protein present in complex c was isolated by screening of an expression library with an ME1a1 DNA probe. This cDNA was found to encode the human homolog of the Drosophila Cut homeodomain protein. The bacterially expressed human Cut (hu-Cut) protein bound to the ME1a1 site, and antibodies against hu-Cut inhibited the ME1a1 binding activity c in nuclear extracts. In cotransfection experiments, the hu-Cut protein repressed transcription from the c-myc promoter, and this repression was shown to be dependent on the presence of the ME1a1 site. Using a reporter construct with a heterologous promoter, we found that c-myc exon 1 sequences were also necessary, in addition to the ME1a1 site, for repression by Cut. Taken together, these results suggest that the human homolog of the Drosophila Cut homeodomain protein is involved in regulation of the c-myc gene.


1994 ◽  
Vol 14 (6) ◽  
pp. 4251-4257 ◽  
Author(s):  
D Dufort ◽  
A Nepveu

Studies of the c-myc promoter have shown that efficient transcription initiation at the P2 start site as well as the block to elongation of transcription require the presence of the ME1a1 protein binding site upstream of the P2 TATA box. Following fractionation by size exclusion chromatography, three protein-ME1a1 DNA complexes, a, b, and c, were detected by electrophoretic mobility shift assay. A cDNA encoding a protein present in complex c was isolated by screening of an expression library with an ME1a1 DNA probe. This cDNA was found to encode the human homolog of the Drosophila Cut homeodomain protein. The bacterially expressed human Cut (hu-Cut) protein bound to the ME1a1 site, and antibodies against hu-Cut inhibited the ME1a1 binding activity c in nuclear extracts. In cotransfection experiments, the hu-Cut protein repressed transcription from the c-myc promoter, and this repression was shown to be dependent on the presence of the ME1a1 site. Using a reporter construct with a heterologous promoter, we found that c-myc exon 1 sequences were also necessary, in addition to the ME1a1 site, for repression by Cut. Taken together, these results suggest that the human homolog of the Drosophila Cut homeodomain protein is involved in regulation of the c-myc gene.


2019 ◽  
Vol 476 (8) ◽  
pp. 1247-1266
Author(s):  
Zhanjun Hou ◽  
Carrie O'Connor ◽  
Josephine Frühauf ◽  
Steve Orr ◽  
Seongho Kim ◽  
...  

Abstract Tumors can be therapeutically targeted with novel antifolates (e.g. AGF94) that are selectively transported by the human proton-coupled folate transporter (hPCFT). Studies were performed to determine the transcription regulation of hPCFT in tumors and identify possible mechanisms that contribute to the highly disparate levels of hPCFT in HepG2 versus HT1080 tumor cells. Transfection of hPCFT-null HT1080 cells with hPCFT restored transport and sensitivity to AGF94. Progressive deletions of the hPCFT promoter construct (−2005 to +96) and reporter gene assays in HepG2 and HT1080 cells confirmed differences in hPCFT transactivation and localized a minimal promoter to between positions −50 and +96. The minimal promoter included KLF15, GC-Box and NRF-1 cis-binding elements whose functional importance was confirmed by promoter deletions and mutations of core consensus sequences and reporter gene assays. In HepG2 cells, NRF-1, KLF15 and Sp1 transcripts were increased over HT1080 cells by ∼5.1-, ∼44-, and ∼2.4-fold, respectively. In Drosophila SL2 cells, transfection with KLF15 and NRF-1 synergistically activated the hPCFT promoter; Sp1 was modestly activating or inhibitory. Chromatin immunoprecipitation and electrophoretic mobility shift assay (EMSA) and supershifts confirmed differential binding of KLF15, Sp1, and NRF-1 to the hPCFT promoter in HepG2 and HT1080 cells that paralleled hPCFT levels. Treatment of HT1080 nuclear extracts (NE) with protein kinase A increased Sp1 binding to its consensus sequence by EMSA, suggesting a role for Sp1 phosphorylation in regulating hPCFT transcription. A better understanding of determinants of hPCFT transcriptional control may identify new therapeutic strategies for cancer by modulating hPCFT levels in combination with hPCFT-targeted antifolates.


1998 ◽  
Vol 18 (10) ◽  
pp. 5852-5860 ◽  
Author(s):  
Frédérique Verdier ◽  
Raquel Rabionet ◽  
Fabrice Gouilleux ◽  
Christian Beisenherz-Huss ◽  
Paule Varlet ◽  
...  

ABSTRACT Two distinct genes encode the closely related signal transducer and activator of transcription proteins STAT5A and STAT5B. The molecular mechanisms of gene regulation by STAT5 and, particularly, the requirement for both STAT5 isoforms are still undetermined. Only a few STAT5 target genes, among them the CIS (cytokine-inducible SH2-containing protein) gene, have been identified. We cloned the human CIS gene and studied the human CIS gene promoter. This promoter contains four STAT binding elements organized in two pairs. By electrophoretic mobility shift assay studies using nuclear extracts of UT7 cells stimulated with erythropoietin, we showed that these four sequences bound to STAT5-containing complexes that exhibited different patterns and affinities: the three upstream STAT binding sequences bound to two distinct STAT5-containing complexes (C0 and C1) and the downstream STAT box bound only to the slower-migrating C1 band. Using nuclear extracts from COS-7 cells transfected with expression vectors for the prolactin receptor, STAT5A, and/or STAT5B, we showed that the C1 complex was composed of a STAT5 tetramer and was dependent on the presence of STAT5A. STAT5B lacked this property and bound with a stronger affinity than did STAT5A to the four STAT sequences as a homodimer (C0 complex). This distinct biochemical difference between STAT5A and STAT5B was confirmed with purified activated STAT5 recombinant proteins. Moreover, we showed that the presence on the same side of the DNA helix of a second STAT sequence increased STAT5 binding and that only half of the palindromic STAT binding sequence was sufficient for the formation of a STAT5 tetramer. Again, STAT5A was essential for this cooperative tetrameric association. This property distinguishes STAT5A from STAT5B and could be essential to explain the transcriptional regulation diversity of STAT5.


1994 ◽  
Vol 14 (7) ◽  
pp. 4380-4389 ◽  
Author(s):  
L I Chen ◽  
T Nishinaka ◽  
K Kwan ◽  
I Kitabayashi ◽  
K Yokoyama ◽  
...  

Studies have demonstrated that the retinoblastoma susceptibility gene product, RB, can either positively or negatively regulate expression of several genes through cis-acting elements in a cell-type-dependent manner. The nucleotide sequence of the retinoblastoma control element (RCE) motif, GCCACC or CCACCC, and the Sp1 consensus binding sequence, CCGCCC, can confer equal responsiveness to RB. Here, we report that RB activates transcription of the c-jun gene through the Sp1-binding site within the c-jun promoter. Preincubation of crude nuclear extracts with monoclonal antibodies to RB results in reduction of Sp1 complexes in a mobility shift assay, while addition of recombinant RB in mobility shift assay mixtures with CCL64 cell extracts leads to an enhancement of DNA-binding activity of SP1. These results suggest that RB is directly or indirectly involved in Sp1-DNA binding activity. A mechanism by which RB regulates transactivation is indicated by our detection of a heat-labile and protease-sensitive Sp1 negative regulator(s) (Sp1-I) that specifically inhibits Sp1 binding to a c-jun Sp1 site. This inhibition is reversed by addition of recombinant RB proteins, suggesting that RB stimulates Sp1-mediated transactivation by liberating Sp1 from Sp1-I. Additional evidence for Sp1-I involvement in Sp1-mediated transactivation was demonstrated by cotransfection of RB, GAL4-Sp1, and a GAL4-responsive template into CV-1 cells. Finally, we have identified Sp1-I, a approximately 20-kDa protein(s) that inhibits the Sp1 complexes from binding to DNA and that is also an RB-associated protein. These findings provide evidence for a functional link between two distinct classes of oncoproteins, RB and c-Jun, that are involved in the control of cell growth, and also define a novel mechanism for the regulation of c-jun expression.


2010 ◽  
Vol 78 (4) ◽  
pp. 1475-1481 ◽  
Author(s):  
Kyou-Nam Cho ◽  
Stephen M. Becker ◽  
Eric R. Houpt

ABSTRACT Entamoeba histolytica is the agent of amebic colitis. In this work we examined the intestinal NF-κB response to this parasite. Using an enzyme-linked immunosorbent assay (ELISA) and an electrophoretic mobility shift assay, we found that the NF-κB subunit p50 predominated in nuclear extracts of whole cecal tissue and of isolated crypts from mice inoculated with E. histolytica. p50 was protective, since C57BL/6 and 129 mice in which there was targeted deletion of this subunit were more susceptible to E. histolytica infection as measured by culture results, cecal parasite ELISA results, and/or histologic scores. The transepithelial electrical resistance of cecal explants from C57BL/6 and 129 p50 knockout mice decreased markedly in response to the parasite compared with the transepithelial electrical resistance of their wild-type counterparts, suggesting that a protective function of p50 was present in the epithelium itself. This work shows that NF-κB activity, particularly activity of the p50 subunit, is one factor that contributes to resistance of the gut to E. histolytica infection.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4453-4453
Author(s):  
Tal David-Kalish ◽  
Deborah Rund ◽  
Elad Malik ◽  
Sara Bar Cohen

Abstract CYP3A4 is the most abundant cytochrome P450 enzyme in the liver and is involved in the metabolism of most clinically used drugs. An A to G substitution in the nifedipine responsive element (NFSE) in the promoter of this gene has been found to be associated with a lower incidence of pediatric therapy-related leukemia (Felix, Proc Natl Acad Sci USA95:13176, 1998) and adult therapy-related leukemia (Rund et al, Leukemia, accepted for publication). To study the effect of this polymorphism on gene expression in hematopoietic cells, we constructed reporter plasmids with the luciferase gene (in pGL3E) under control of the CYP3A4 promoter, using both the polymorphic and normal sequences. These plasmids were transfected into several cell lines of hematopoietic origin and luciferase was quantitated. We used KG1a (myeloid leukemia), K562 (CML blast crisis), and as controls, MelA1, a melanoma line and HepG2, a hepatoma line. Experiments were repeated at least three times for each cell line. The results consistently demonstrated 20–30% lower luciferase activity (in KG1a and K562 respectively) using the polymorphic sequence as compared to the normal sequence while the MelA1 and HepG2 lines showed the opposite effect, a 25% higher luciferase expression with the variant sequence. The results for HepG2 were in agreement with those reported by Rebbeck (Environmental and Molecular Mutagenesis49:299, 2003). To identify the factors binding at NFSE which may influence expression, electrophoretic mobility shift assays were performed using nuclear extracts of both cell lines (K562, KG1a, and HL60) and patient leukemia cells with a DNA probe representing the normal and polymorphic sequences. A gel shift was demonstrated, indicating binding of nuclear extracts to the region of the polymorphism. The database of transacting factors states complete homology of the polymorphic sequence of the NFSE region with the consensus binding site of HSF-1. We therefore performed a series of experiments to determine if HSF-1 is the protein binding at that site. HSF-1 is a multimeric transcription factor which binds to heat shock elements in many promoters which are rapidly transcribed following stress by increases in temperature. We found that recombinant HSF-1 did not bind to the DNA probe alone. However, nuclear extracts of cells which underwent stress by heating to 43°C for one hour (which is known to increase HSF-1 production) demonstrated increased binding to the probe representing the region of the polymorphism and Western blotting demonstrated more HSF-1 in these extracts. Using a Streptavidin-biotin system with a DNA fragment representing the NFSE region, we demonstrated that DNA binding activity to the probe was present in the elution fractions which contained HSF-1, as detected by ECL (enhanced chemoluminescence). Elution fractions which did not show DNA binding activity did not contain detectable HSF-1. We conclude that HSF-1 may be the protein which binds at the NFSE element of the CYP3A promoter but that it binds either as a multimer or as part of a complex of several proteins, which complicates its detection as a DNA binding protein.


1998 ◽  
Vol 2 (4) ◽  
pp. 243-249 ◽  
Author(s):  
Koichiro Kako ◽  
Hisanori Wakamatsu ◽  
Toshiyuki Hamada ◽  
Marek Banasik ◽  
Keiko Ohata ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document