scholarly journals Transition metal M(II) complexes with isonicotinoylhydrazone-9-anthraldehyde

2010 ◽  
Vol 75 (11) ◽  
pp. 1515-1531 ◽  
Author(s):  
M.L. Dianu ◽  
A. Kriza ◽  
N. Stanica ◽  
A.M. Musuc

New complexes of isonicotinoylhydrazone-9-anthraldehyde with Cu(II), Co(II) and Ni(II) have been prepared and characterized by analytical and physico-chemical techniques, such as elemental and thermal analyses, magnetic susceptibility and conductivity measurements, and electronic, EPR and IR spectral studies. The infrared spectral studies revealed the bidentate or monodentate nature of the Schiff base in the complexes; the pyridine nitrogen does not participate in the coordination. A tetrahedral geometry is suggested for the nitrate-complexes and an octahedral geometry for the others. Thermal studies support the chemical formulation of these complexes.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
M. Yadav ◽  
Debasis Behera

Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) complex of N-thiophenoyl -N′-phenylthiocarbohydrazide (H2TPTH) have been synthesized and characterized by elemental analysis, magnetic susceptibility measurements, infrared, NMR, electronic, and ESR spectral studies. The complexes were found to have compositions [Mn(H TPTH)2], [Co(TPTH) (H2O)2], [Ni(TPTH) (H2O)2], [Cu(TPTH)], [Zn(H TPTH)], [Cd(H TPTH)2], and [Fe(H TPTH)2(EtOH)]. The magnetic and electronic spectral studies suggest square planar geometry for [Cu(TPTH)], tetrahedral geometry for [Zn(TPTH)] and [Cd(H TPTH)2], and octahedral geometry for rest of the complexes. The infrared spectral studies of the 1 : 1 deprotonated complexes suggest bonding through enolic oxygen, thiolato sulfur, and both the hydrazinic nitrogens. Thus, H2TPTH acts as a binegative tetradentate ligand. H2TPTH and its metal complexes have been screened against several bacteria and fungi.


Author(s):  
Musarat Farjana Yesmin ◽  
Farzana Khanm Camellia ◽  
Modina Bashar ◽  
Md. Sajjad Hossain ◽  
Saiyad Nasira ◽  
...  

New complexes of Cu (II) and Ni (II) of the Schiff Base, 2-(((2-((4-hydroxybenzylidene) amino)ethyl)imino)methyl) phenol were synthesized and characterized by analytical and  physico-chemical techniques including magnetic susceptibility, conductivity measurements, electronic and IR spectral studies. The infrared spectral studies revealed the tetra-dentate nature of the Schiff base in the complexes. On the basis of all characterizations, square- planar geometry has proposed for all the obtained complexes. The complexes showed moderate antimicrobial activity against Escherichia coli and Staphylococcus aureus.


2021 ◽  
Vol 12 (2) ◽  
pp. 96-103
Author(s):  
E.T. Omotade ◽  
A.P. Oviawe

The mixed ligand complexes involving Fe(II), Co(II) and Ni(II) ions, Schiff base 4 phenylpyrazal-5-one (L1) and L-lysine (Lys) were synthesized. The complexes were characterized on the basis of their elemental analysis, conductivity measurements, FT-IR, MS,1H-NMR and 13C-NMR spectral studies. All the synthesized complexes were subjected to simultaneous thermogravimetric analysis to study their decomposition mechanism and thermal stability. The mixed ligand complexes were screened against some strains of bacteria and fungi to study their antimicrobial activity. The complexes were found to be non-electrolytes and possessed octahedral geometry. The results showed that the metal complexes possessed better antimicrobial activity than the free ligands.


2006 ◽  
Vol 71 (5) ◽  
pp. 529-542 ◽  
Author(s):  
Kalagouda Gudasi ◽  
Siddappa Patil ◽  
Ramesh Vadavi ◽  
Rashmi Shenoy ◽  
Manjula Patil

A new macroacyclic amide ligand N,N?-bis(2-benzothiazolyl)-2,6-pyridinedicarboxamide (BPD), formed by the condensation of 2,6-pyridinedicarbonyldichloride with 2-aminobenzothiazole and its Cu(II), Ni(II), Co(II), Mn(II), Zn(II) and Cd(II) complexes were synthesized. Their structures were elucidated on the basis of elemental analyses, conductance measurements, magnetic moments, spectral (IR, NMR UV-Visible, EPR and FAB) and thermal studies. The complexes exhibit an octahedral geometry around the metal center. Conductance data of the complexes suggested them to be 1:1 electrolytes. The pentadentate behavior of the ligand was proposed on the basis of spectral studies. The X-band EPR spectra of the Cu(II) and Mn(II) complexes in the polycrystalline state at room (300 K) and liquid nitrogen temperature (77 K) were recorded and their salient features are reported.


2011 ◽  
Vol 8 (s1) ◽  
pp. S271-S281
Author(s):  
B. Venkateswara Rao ◽  
D. M. Puri

Polynuclear copper(II) derivatives of 1-hydroxyethylidenediphosphonic acid (HEDP), 1-aminoethylidenediphosphonic acid (AEDP, H4L),α-aminobenzylidene diphosphonic acid (ABDP, H4L), 1-amino-2-carboxyethane- 1,1-diphosphonic acid (ACEDP, H5L), 1,3 diaminopropane-1,1,3,3-tetra-phosphonic acid (DAPTP, H8L), Ethylenediamine-N,N'-bis (dimethyl-methylenephosphonic) acid (EDBDMPO, H4L),o-phenylene-diamine-N,N'-bis (dimethylmethylenephosphonic) acid (PDBDMPO, H4L), diethylene triamine –N,N,N',N',N"N-penta (methylene phosphonic) acid (DETAPMPO, H10L) and diethylene triamine –N,N"-bis (dimethyl methylene phosphonic) acid (DETBDMPO, H4L) have been prepared in aqueous medium. The general formula of derivatives from elemental analysis was found to be Cu2L.XH2O (in case of AEDP, ABDP, EDBDMPO, PDBDMPO, DETBDMPO), Cu5L2.XH2O (in case of ACEDP) Cu4L.XH2O, Cu2H4L. XH2O (in case of DAPTP) and Cu5L.XH2O (in case of DETAPMPO). The electronic spectra have shown them to be six coordinated with slight distortion from octahedral geometry. Antiferromagnetism was inferred from magnetic moment data. Infrared spectral studies were carried out to determine coordination sites. EPR (Electron Paramagnetic Resonance) spectra that supports the presence of tetragonal distortion and antiferromagnetic behaviour, have also been studied.


2005 ◽  
Vol 2 (1) ◽  
pp. 21-29 ◽  
Author(s):  
Chetan K. Modi ◽  
Ashwin S. Patel ◽  
Bharat T. Thaker

The reaction of Co(NO3)2.6H2O and Ni(NO3)2.6H2O with hydrazones derived from 1-phenyl-3-methyl-4-acyl-5-pyrazolone (where acyl = acetyl, propionyl, butyryl and benzoyl) with 2-picolinic acid hydrazide have been studied and characterized on the basis of elemental analysis, magnetic moments, molar conductivity measurements, IR and electronic spectral studies and thermogravimetric analysis. Various ligand field parameters have been calculated. Electronic spectral data and the magnetic moment values suggest an octahedral structure for all cobalt(II) and nickel(II) complexes.


2020 ◽  
Vol 32 (12) ◽  
pp. 3197-3202
Author(s):  
Rajeev Kumar ◽  
Sanjay Kumar ◽  
Madhu Bala

The complexes of Co(II), Ni(II), Zn(II) and Cd(II) with isatinylsemicarbazone (IstscabH) and isatinylthiosemicarbazone (IsttscabH) of composition ML2·2H2O [M = Co(II) or Ni(II) and LH = IstscabH or IsttscabH] and ML2 [M = Zn(II) or Cd(II) and LH = IstscabH or IsttscabH] have been synthesized and their antibacterial activity has been investigated. Their inclusion complexes with β-cyclodextrin (β-CD) having composition [ML2(β-CD)·2H2O] or M(C60H88N8O39S2)], [M = Co(II) or Ni(II) and LH = IstscabH or IsttscabH] and [ML2(β-CD) or M(C60H84N6O-37S2)], [M = Zn(II) or Cd(II) and LH = IstscabH or IsttscabH] have also been isolated in solid states. All the synthesized metal complexes have been characterized by analytical data, molar conductance, magnetic susceptibility, electronic and infrared spectral studies. The tetrahedral geometry for Zn(II) and Cd(II) and octahederal geometry for Co(II) and Ni(II) have been assigned on the basis of magnetic susceptibility, UV electronic transitions and IR spectral bands assignments. The structures are retained in inclusion products. A biological activity of Schiff bases, their metal complexes and inclusion products for bacteria Escherichia. coli, Bacillus subtilis and Staphylococcus aureus have been screened and activity explained.


2009 ◽  
Vol 74 (8-9) ◽  
pp. 927-938 ◽  
Author(s):  
Paulmony Tharmaraj ◽  
Deivasigamani Kodimunthiri ◽  
Clarence Sheela ◽  
Shanmuga Priya

A new series of Cu(II), Co(II) and Ni(II) complexes with the 1-(2- -hydroxyphenyl)-3-phenyl-2-propen-1-one, N2-[(3,5-dimethyl-1H-pyrazol-1- -yl)methyl]hydrazone ligand, C21H22N4O (LH), were synthesized by the reaction of 1-(2-hydroxyphenyl)-3-phenyl-2-propen-1-one, hydrazone with (3,5-dimethyl- 1H-pyrazol-1-yl)methanol and characterized. The nature of the bonding and geometry of the complexes were deduced from elemental analysis, IR, electronic and 1H-NMR spectroscopy, and magnetic susceptibility and conductivity measurements. The studies indicated square-planar, tetrahedral and octahedral geometry for the copper(II), cobalt(II) and nickel(II) complexes, respectively. The ESR spectra of the copper(II) complex in acetonitrile at 300 and 77 K were recorded and their salient features are reported. The electrochemical behavior of the copper (II) complex was studied by cyclic voltammetry. The antimicrobial activity of the ligand and its metal complexes were studied against the following strains of microorganism: Staphylococcus aureus, Salmonella enterica typhi, Escherichia coli and Bacillus subtilis by the well diffusion method. Metal complexes showed enhanced antimicrobial activity compared with that of the free ligand.


2009 ◽  
Vol 6 (s1) ◽  
pp. S445-S451
Author(s):  
R. T. Vashi ◽  
S. B. Patel

Novel ligands containing quinazoline-4-one-8-hydroxyquinoline (QQ) merged moieties were prepared and characterized. For this anthranilic acid and 5-bromoanthranilic acid were converted respectively into 2-chloromethyl–3-(4-methyl phenyl)-3(H)-quinazoline-4-one and 2-chloromethyl–3-(methyl phenyl)-6-bromo-3(H)-quinazoline-4-one. Both these compounds were condensed with 5-amino-8-hydroxyquinoline. The so called resulted compounds were named respectively as 2-[(8-hydroxy-quinolinyl) –5- amino methyl] -3-(4-methylphenyl)- 3(H)- quinazoline -4- one and 2-[(8-hydroxyquinolinyl)-5-aminomethyl] -3(methyl phenyl)-6-bromo-3(H)-quinazoline-4-one. Both the compounds were designated respectively as HL1and HL2ligands. The transition metal (Cu2+, Ni2+, Zn2+, Mn2+and Co2+) complexes of both these ligands were prepared. The ligands and their complexes as case may be were characterized by elemental analysis, spectral studies and number of hydroxyl groups. The stoichiometry of the complexes has been found to be 1:2 (metal: ligand). An octahedral geometry around Co2+, Ni2+and Mn2+, distorted octahedral geometry around Cu2+and tetrahedral geometry of around Zn2+have been proposed. These complexes also been tested for their antifungal activities.


2007 ◽  
Vol 72 (4) ◽  
pp. 357-366 ◽  
Author(s):  
Kalagouda Gudasi ◽  
Manjula Patil ◽  
Ramesh Vadavi ◽  
Rashmi Shenoy ◽  
Siddappa Patil

A new ligand 5-[6-(5-mercapto-1,3,4-oxadiazol-2-yl)pyridin-2-yl]-1,3,4-oxadiazole- 2-thiol (L) and its Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) complexes were synthesized. The authenticity of the ligand and its transition metal complexes were established by elemental analyses, conductance and magnetic susceptibility measurements, as well as spectroscopic (IR, 1H- and 13C-NMR, electronic, mass, ESR) and thermal studies. The IR and 1H-NMR spectral studies revealed the existence of the ligand in the thiol form in the solid state, whereas in the thione form in the dissolved state. The magnetic and electronic spectral studies suggest an octahedral geometry for all the complexes. The ligand acts as a tridentate ligand coordinating through the pyridine nitrogen and the nitrogen atoms (N-3' and N-3'') of the two oxadiazole rings. Antimicrobial screening of the ligand and its metal complexes were determined against the bacteria Escherichia coli and Bacillus cirroflagellosus, as well as against the fungi, Aspergillus niger and Candida albicans. .


Sign in / Sign up

Export Citation Format

Share Document