scholarly journals Microwave assisted synthesis of novel 4h-chromene derivatives bearing phenoxypyrazole and their antimicrobial activity assess

2012 ◽  
Vol 77 (9) ◽  
pp. 1165-1174 ◽  
Author(s):  
Chetan Sangani ◽  
Nimesh Shah ◽  
Manish Patel ◽  
Ranjan Patel

A new series of 4H-chromene derivatives 4(a-p) bearing 5-phenoxypyrazole nucleus has been synthesized under microwave irradiation by reaction of 5-phenoxypyrazole-4-carbaldehyde 1(a-h), malononitrile 2 and compounds (Cyclohexanedione, Dimedon) 3(a-b) in presence of NaOH as basic catalyst. All the compounds were screened against three Gram positive bacteria (Streptococcus pneumoniae, Clostridium tetani, Bacillus subtilis), three Gram negative bacteria (Salmonella typhi, Vibrio cholerae, Escherichia coli) and two fungi (Aspergillus fumigatus, Candida albicans) using broth microdilution MIC (Minimum Inhibitory Concentration) method. Upon study of antimicrobial screening, it has been observed that, majority of the compounds were found to be active against Clostridium tetani and Bacillus subtilis as well as against Candida albicans as compared to standard drugs.

2011 ◽  
Vol 65 (5) ◽  
Author(s):  
Jigar Makawana ◽  
Manish Patel ◽  
Ranjan Patel

AbstractA series of new 3-(2-morpholinoquinolin-3-yl)acrylonitrile derivatives (IVa-IVf) has been synthesised by the base-catalysed condensation reaction of 2-morpholinoqionoline-3-carboxaldehydes (IIa-IIc) and 2-cyanomethylbenzimidazoles (IIIa-IIIb). Subsequent regiospecific reduction of the C—C double bond in acrylonitrile moiety afforded 3-(2-morpholinoquinolin-3-yl)propanenitrile derivatives (Va-Vf). All the compounds synthesised were subjected to in vitro antimicrobial screening against some representatives of bacteria and fungi. The majority of the compounds were found to be active against Gram-positive bacteria Bacillus subtilis and Clostridium tetani as well as against the fungal pathogen Candida albicans.


2014 ◽  
Vol 8 (3) ◽  
pp. 40-45
Author(s):  
Zina Hashem Shehab ◽  
Huda Suhail Abid ◽  
Sumaya Fadhil Hamad ◽  
Sara Haitham

The study was conducted to evaluate the inhibitory activity of methanol extract of Gardenia jasminoides leaves compared with leaf crude extracts for some organic solvents namely Methanol, Ethanol, Petroleum ether, Asetone and Chloroform on growth of some pathogenic bacteria and yeast, which included four gram positive isolates Staphylococcus aureus, Enterococcus faecalis, Streptococcus pyogenes and Bacillus cereus and gram negative isolates Escherichia coli, Salmonella typhi, Proteus vulgaris and Pseudomonas aeruginosa and some yeasts Candida albicans and Saccharomyces boulardii, by using well diffusion method. The inhibitory activity of extracts in the tested bacterial strains and yeasts was varied according to the type of extracting solvents and are tested microorganisms. The methanol callus extract which grown on Murashige and Skoog (MS) media by using (Naphthalen acitic acid) NAA and (Benzyle adenine) BA as growth regulator highly effective as compared to the other extracts as for inhibition of three gram positive bacteria and three gram negative bacteria,which include Staphylococcus aureus and, Proteus vulgaris, followed by acetone and ethanolic extracts which include two gram positive bacteria and two gram negative bacteria. All extracts had highly effect in growth of Candida albicans while all crude extracts didn’t show any sensitivity against Saccharomyces boulardii, and when we’d done (High Performance Liquid Chromatography) HPLC test for detection of some active compound we found Quinic acid, Iridiods glycosides and Crocin which its rate in fresh callus was higher than fresh leaves.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Serkan Yavuz ◽  
Hilal Yıldırım

In the present study, some novel ferrocene derivatives carrying urea, thiourea, and sulfonamide groups were synthesized, and all compounds were characterized by spectral and elemental analyses. These compounds were screened for their antibacterial activities and also their minimum inhibitory concentration (MIC) against Gram-positive bacteria (Staphylococcus aureusandBacillus subtilis) and Gram-negative bacteria (Klebsiella pneumoniaandEscherichia coli) and antifungal activities againstSaccharomyces cerevisiaeandCandida albicans. Amongst the tested compounds,4b,4c,5b, and6bdisplayed excellent antimicrobial activity.


2004 ◽  
Vol 59 (9-10) ◽  
pp. 657-662 ◽  
Author(s):  
Juliana B. Pretto ◽  
Valdir Cechinel-Filho ◽  
Vânia F. Noldin ◽  
Mara R. K. Sartori ◽  
Daniela E. B Isaias ◽  
...  

Abstract Calophyllum brasiliense (Clusiaceae/Guttiferae) is a native Brazilian medicinal plant traditionally used against several diseases, including infectious pathologies. Crude methanolic extracts (CME) and two fractions, denoted non-polar (soluble in chloroform) and polar (nonsoluble in chloroform), were prepared from different parts of the plant (roots, stems, leaves, flowers and fruits) and studied. The following compounds were isolated and tested against pathogenic bacteria and yeasts by determination of the minimal inhibitory concentration (MIC): brasiliensic acid (1), gallic acid (2), epicatechin (3), protocatechuic acid (4), friedelin (5) and 1,5-dihydroxyxanthone (6). The results indicated that all the parts of the plant exhibited antimicrobial activity against Gram-positive bacteria, which are selectively inhibited by components of C. brasiliense. No activity was observed against Gram-negative bacteria and yeasts tested. Regarding the isolated compounds, substance 4 showed antimicrobial activity against all the tested microorganisms, whereas compound 6 exhibited antimicrobial activity only against Gram-positive bacteria. The results from the current study confirm and justify the popular use of this plant to treat infectious processes.


Author(s):  
Chinyere Benardette Chinaka Ikpa ◽  
Uchechukwu C. Okoro ◽  
Collins I. Ubochi ◽  
Kieran O. Nwanorh

The 2-phenylsulphonamide derivatives of amino acids were synthesis by simple substitution of benzenesulphonylchloride (6) with amino acids (1-5) containing pharmacological active functionalities. Structures of the synthesised compounds (7a-7e) were characterised using FT-IR, NMR(1H,13C) and elemental analysis. The anti bacterial activities of the synthesised compounds were evaluated against gram positive bacteria: Staph and Streptococcus, gram negative bacteria: E-coli, Klebsiella, Proteus, and pseudomonas using 200 µl of 10 mg/ml and minimum inhibitory concentration (MIC) were also determined. The compounds exhibited effective anti bacterial properties though some are not more active than the standard drug ciprofloxacin.


Author(s):  
Samaila Abubakar ◽  
Musa Muktari ◽  
Rejoice Atiko

The synthesis and antimicrobial application of Co (III) and Fe (III) complexes of imine functionalized N-heterocyclic carbene (Imino-NHC) ligands is reported. The ligand precursors 1-(2-[(hydroxyl-benzylidene)-amino]-ethyl)-3-R-3H-imidazol-1-ium bromide where R = pyridyl (1a) and benzyl (1b) have been reported in our previous work. The in-situ generated ligands of 1a and 1b have been successfully coordinated to CoBr2 and [FeI(Cp)(CO)2] leading to the isolation of air-stable N^C^N^O four coordinate Co(III)  complex 2 and a six-coordinate Fe(III) complex 3. The synthesised complexes were both found to be NMR inactive hence were characterize using FTIR and LRMS. The complexes were screened for antimicrobial activities against four gram-negative bacteria Escherichia Coli (E-coli), Shigella, Klebsiella pneumoniae (K. Pneumoniae) and Salmonella typhi (S. typhi) and a gram positive bacteria Staphylocossus aureus (S. aureus). The antimicrobial test was conducted using disc diffusion methods and based on the concentrations of 100, 200, 300, 400 and 500 µg/ mL, significant activities were recorded for both cobalt and the iron complexes.


1970 ◽  
Vol 18 ◽  
pp. 128-133 ◽  
Author(s):  
MTH Molla ◽  
MS Ahsan ◽  
MT Alam ◽  
ME Haque

Context: Development of resistance in human pathogens against conventional antibiotic necessitates searching indigenous medicinal plants having antibacterial property. Seven medicinal plants used actively in folklore, ayurvedic and traditional system of medicine were selected for the evaluation of their antimicrobial activity for this study.   Objectives: Evaluation of the effectiveness of some medicinal plant extracts against four Gram-positive and five Gram-negative bacteria.  Materials and Methods: The antibacterial activity of the crude ethanolic extracts obtained from the leaves of seven medicinal plants; viz., Andrographis paniculata, Catharanthus roseus, Adhatoda vasica, Vitex vegundo, Aloe vera, Flacortia ramontchi and Nyctanthes arbortristis were tested against nine bacteria at concentrations of 300-, 400- and 500 μg/ml. Standard antibiotic disc kanamycin (30μg/ml) was used for comparison. The minimum inhibitory concentration (MIC) of ethanolic extracts of the leaves of these medicinal plants were determined by testing the extracts on four Gram-positive and five Gram-negative bacteria by serial tube dilution method.   Results: All the extracts have notable antimicrobial activities against the test organisms. The ethanolic extracts of the leaves showed the highest antimicrobial activities against Bacillus megaterium and Shigella dysenteriae for An. paniculata, Ad. vasica and Al. vera; Bacillus subtilis and Salmonella typhi for C. roseus and N. arbortristis; Staphylociccus aureus and Salmonella typhi for V. vegundo; and Bacillus subtilis and Shigella sonnei for F. ramontchi respectively. The extract of the plants had MIC values ranging from 32 to 128 mg/ml. All plant extracts showed no MIC against Shigella shiga and against Sarcina lutea only C. roseus showed MIC 128 mg/ml.   Conclusion: The results revealed that the ethanolic extracts of the plants under present investigation have notable antimicrobial activities.   Keywords: medicinal plants; antimicrobial screening; MIC; bacteria. DOI: http://dx.doi.org/10.3329/jbs.v18i0.8788 JBS 2010; 18(0): 128-133


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3891
Author(s):  
Giovanni Petrillo ◽  
Cinzia Tavani ◽  
Lara Bianchi ◽  
Alice Benzi ◽  
Maria Maddalena Cavalluzzi ◽  
...  

Twenty-two novel, variously substituted nitroazetidines were designed as both sulfonamide and urethane vinylogs possibly endowed with antimicrobial activity. The compounds under study were obtained following a general procedure recently developed, starting from 4-nitropentadienoates deriving from a common β-nitrothiophenic precursor. While being devoid of any activity against fungi and Gram-negative bacteria, most of the title compounds performed as potent antibacterial agents on Gram-positive bacteria (E. faecalis and three strains of S. aureus), with the most potent congener being the 1-(4-chlorobenzyl)-3-nitro-4-(p-tolyl)azetidine 22, which displayed potency close to that of norfloxacin, the reference antibiotic (minimum inhibitory concentration values 4 and 1–2 μg/mL, respectively). Since 22 combines a relatively efficient activity against Gram-positive bacteria and a cytotoxicity on eucharyotic cells only at 4-times higher concentrations (inhibiting concentration on 50% of the cultured eukaryotic cells: 36 ± 10 μM, MIC: 8.6 μM), it may be considered as a promising hit compound for the development of a new series of antibacterials selectively active on Gram-positive pathogens. The relatively concise synthetic route described herein, based on widely available starting materials, could feed further structure–activity relationship studies, thus allowing for the fine investigation and optimization of the toxico-pharmacological profile.


2010 ◽  
Vol 7 (s1) ◽  
pp. S61-S66 ◽  
Author(s):  
Makhloufia Mohammed ◽  
BenaÏssa Tahar ◽  
Derdour AÏcha ◽  
Henni Djamel Eddine

A quaternary ammonium salt was synthesized from diethylaminoethyl methacrylate (DEAEMA) by quaternization with hexadecyl bromide. The resultant compound (Am-h) was characterized by FTIR and NMR spectroscopy. Its bactericidal activity was evaluated by determining minimum inhibitory concentration (MIC) values and inhibitory zone diameter against gram positive bacteria (Streptococcus sp.) and gram negative bacteria such asAcenito baumannii, Klebsiella pneumoniaeandProteus sp. respectively. The results showed that the MIC values of the synthesised compound (Am-h) were 2 μg/mL againstAcenito baumannii, Klebsiella pneumoniae, Proteus sp. and Streptococcus sp.


Sign in / Sign up

Export Citation Format

Share Document