scholarly journals Influence of control algorithms parameters on an electromechanical converter with a secondary discrete part

2017 ◽  
Vol 14 (3) ◽  
pp. 323-331 ◽  
Author(s):  
Denis Kuimov ◽  
Maksim Minkin

An alternative configuration of a device with a secondary discrete part using a magnetic system of a similar multi-phase inductor machine and concentrated windings without an internal rotor is proposed. An algorithm of sensorless control of a motion process of a secondary discrete part is proposed. The analysis of the distribution nature of the magnetic field for various switching algorithms is carried out to reduce negative influence of the ?dead? zones of the first and second order. The features of the movement process of the secondary discrete part in the working chamber of the device are considered. The results of in the electromagnetic force change affecting a ferromagnetic working element are presented, and recommendations for the application of switching algorithms are given.

A Current can be measured absolutely in the electro-magnetic system of units either by means of the action of the current on a magnet, or of the current on a current. The former method has the disadvantage that at least two independent measurements are necessary. For example, in using an electro-magnetic balance, the strength of the magnet acted on by the electric circuit has to be determined, as well as the force exerted on the magnet by the circuit. In galvanometers, either of the sine or tangent type, the magnetic field produced by the electric circuit is compared with the earth’s horizontal field, the strength of which is determined independently. Further, as the strength of artificial magnets cannot be regarded as truly constant, and the earth’s field is subject to diurnal and secular variations, this class of measurement is not ideal. In the electrodynamic class of measurement the mutual action between two or more coils carrying current takes the form of a torque, as in electrodynamometers, or a direct force, as in current weighers. In electrodynamometers the torque may be measured with a bifilar suspension, the torsion of a wire or spring, or by means of a gravity balance. Current weigher measurements are almost always made by direct comparison with gravity, which is believed to be constant, and is known to a higher degree of accuracy than the strengths of any magnet or magnetic field that has yet been measured.


2021 ◽  
Vol 2131 (2) ◽  
pp. 022025
Author(s):  
D N Kuimov ◽  
M S Minkin

Abstract In the present article, devices with a discrete secondary part are considered, which act as means of intensifying many technological processes of mixing and dispersing materials. In the classic version, the device has a number of disadvantages. To eliminate the shortcomings, the design of an electromechanical converter with a discrete secondary part was developed, which differs from the classical version by a magnetic system capable of implementing the process of controlling the movement of a large set of ferromagnetic elements along a pre-developed trajectory.


2004 ◽  
Vol 119 (2) ◽  
pp. 12-22
Author(s):  
Dariusz PIETRAS ◽  
Maciej SOBIESZCZAŃSKI

The article presents results of a spark ignition engine examination, which has been conducted to establish the influence of exhaust gases recirculation on the engine performance and the toxic content in exhaust gases. The research concentrated on identifying a range of recirculation levels, which enabled to eliminate its negative influence on the engine performance by means of selecting an appropriate angle of advance. Further, the article discusses the engine examination procedures involving different recirculation control algorithms in the ECM chip. Finally, the article presents EURO II and EURO III tests, conducted on a vehicle/engine controlled by the above-mentioned software.


2016 ◽  
Vol 34 (2) ◽  
pp. 352-355 ◽  
Author(s):  
A.V. Petrov ◽  
G.E. Remnev ◽  
S.K. Pavlov ◽  
I.D. Rumyantsev

AbstractThe paper presents the results of calculation and optimization of a structure of a radial insulating magnetic field in an acceleration gap of a high-power ion diode. A diode configuration with an induction plasma source and an anode configuration with azimuthally symmetrical slots and a pair of cathode coils of a magnetic diode system have been studied. When the size of the slots is ≤5 mm and codirectional magnetic fields of a diode and shock induction coil, the perturbation of the B-field does not exceed ≤20% and is located in the region near the anode. In this condition, the topology of the magnetic field В = f(1/r) is maintained in the acceleration gap. It was shown that the required radial distribution of the B-field can be optimized by varying the anode profile in the region opposite to two cathode coils of the diode magnetic system.


Author(s):  
Alexandr Kriachok ◽  
Mykola Reutskyi ◽  
Dmytro Sushko

The creation of modern computer-aided design systems for devices and electrical machines of new generation, built on the basis of permanent magnets, necessitates the development of new mathematical models and effective computational algorithms. Based on mathematical models and using IT technologies, it is possible to develop both separate functional CAD blocks and an integrated system for calculating device parameters and modeling its characteristics. The paper considers a typical design of an electromechanical device with permanent magnets, which create a field with specified characteristics in the working area. At the first stage of the study, the heterogeneity of the environment was not taken into account. To calculate the strength of the magnetic field created by rectangular magnets, two mathematical models were obtained. This approach made it possible, first, to check the results of calculations and, secondly, to use mathematical models for comparative analysis when performing numerical modeling of the magnetic field characteristics for a system built, for example, using cylindrical magnets. On the foundation of developed mathematical model, an algorithm for analyzing the initial characteristics of a special device with permanent magnets is proposed. Devices of this type can be used to register small displacements. At the same time, the very scheme of the magnetic system and mathematical models describing the properties of the magnetic field can be used in the development of other types of electrical devices built using permanent magnets. A number of experiments on numerical simulation of the magnetic field pattern in the working area of the device were performed in the work. The results of the sensor signal simulation during the movement of the test body are also presented.


2019 ◽  
Vol 89 (9) ◽  
pp. 1325
Author(s):  
А.В. Юрченко ◽  
Д.М. Николенко ◽  
И.А. Рачек ◽  
Д.К. Топорков ◽  
Ю.В. Шестаков

The simulation of the movement of hydrogen and deuterium molecules in the magnetic system of the installation designed to obtain nuclear spin-polarized molecules is produced. For the spatial separation of molecules with different projections of the magnetic moments of spin filtering method in a nonuniform magnetic field, superconducting sextupole magnets are used. The calculation was performed when the induction of the magnetic field near the poles of 3.7 T and the nozzle temperature of the 7K. The simulation showed that the ratio of the polarized flux of hydrogen molecules into the detector to the total flux from the source nozzle is 2.3 × 10-6, and the nuclear polarization is about 100%. For deuterium, the calculations showed that this ratio is 7 times less because of the smallness of the magnetic moment with respect to hydrogen molecules. The graphs of molecular trajectories in the magnetic system and their spatial distribution are presented. The mathematical aspects of the developed computer program algorithm are considered.


2021 ◽  
Vol 7 (2) ◽  
pp. 119-129
Author(s):  
Yuri F. Antonov

Background: The methods of calculation and elements of the technology for creating heteropolar magnetic systems of levitation, lateral stabilization and a rotor-runner of a traction linear synchronous motor for the development of the transport technology "Russian Maglev" in order to achieve an increased levitation gap of 0.2 m, reduce the threshold speed of the exit vehicle in levitation mode up to 10 km/h. Aim: to develop methods for calculating and designing heteropolar poles from elementary permanent magnets, coils of the same type based on composite low-temperature superconductors and high-temperature tape superconductors of the second generation and a step-by-step technology for their production. Tasks: Creation of an on-board magnetic system of levitation and lateral stabilization, allowing to provide a levitation gap of 0.2 m, a threshold value of vehicle speed of 10 km/h when transition to levitation mode, to reduce stray magnetic fields to the level of the natural field of terrestrial magnetism of 50 T; Creation of a rotor-runner of a linear synchronous motor with an ironless stator with a power of 10 MW. Methods: outlines the main calculation methodologies: "analysis" and "synthesis". The "analysis" methodology is adopted in solving the "direct" calculation problem, when the configuration of the magnetic system is set and the magnetic field in the working area is calculated, and, if necessary, the stray magnetic fields. This methodology can be effectively applied if there is experience in creating magnetic systems. Otherwise, the "synthesis" methodology is applied, which is used in solving the "inverse" calculation problem, in which the picture of the distribution of the magnetic field in the working zone is set and the configuration of the magnetic system is found (synthesized). Results of the study performed: The parameters and characteristics of high-energy permanent magnets made of rare-earth metals, low-temperature and high-temperature superconducting winding materials have been analyzed, the choice of permanent magnets and superconducting winding material has been made; Calculations of the magnetic system of permanent magnets in the "Halbach assembly" and in the traditional assembly in a toothed ferromagnetic core have been carried out; Calculations of a track coil with a rectangular cross-section of the winding are performed; Methods for calculating and optimizing superconducting magnetic systems from a set of similar track modules have been developed; Conclusions: The results of the performed fundamental research will allow starting the calculation, design and construction of conveyor-main passenger and freight lines of maglev transport, as well as urban public transport.


2009 ◽  
Vol 5 (H15) ◽  
pp. 444-445
Author(s):  
Shu-ichiro Inutsuka

AbstractThe recent progress in our understanding of the dynamics of muliti-phase interstellar medium (ISM) is reviewed. Non-linear perturbations (e.g., shock waves or time-dependent radiation field) lead to the interchange between warm phase and cold phase via thermal instability. Dynamical modelling of this phase transition dynamics is essential in describing ubiquitous turbulence in ISM and the formation of molecular clouds. A concept of magnetically multi-phase medium is introduced. Recent finding of the magnetic field amplification in the blast wave propagating in magnetized multi-phase ISM is providing a strong motivation for rapid acceleration of cosmic rays.


Sign in / Sign up

Export Citation Format

Share Document