scholarly journals The effect of CNT content and sintering temperature on some properties of CNT-reinforced MgAl composites

2017 ◽  
Vol 49 (4) ◽  
pp. 347-357
Author(s):  
Serkan Islak ◽  
Özkan Küçük ◽  
Özkan Eski ◽  
Cihan Özorak ◽  
Mehmet Akkaş

Magnesium and its alloys are considered as an important material for modern light structures at the present time and therefore they have a wide area of usage especially in electronics, aircraft, and automotive industries. Its popularity increases further as a result of its production as a composite material. In this study, carbon nanotube (CNT) reinforced MgAl matrix composite materials were produced by using the hot pressing method. While 0.25 wt%, 0.50 wt%, 0.75 wt%, and 1.00 wt% CNT were added, 450?C, 500?C, and 550?C was selected as sintering temperatures. The effect of sintering temperature and amount of CNT on some properties of the composites was examined. Microstructure and phase composition of the materials were examined by using optical microscopy (OM), scanning electron microscope (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS). The hardness of the composites was measured in Brinell. Relative densities of the materials were determined in accordance with Archimedes? principle. A dense and slightly porous structure was obtained based on both SEM images and density measurements. XRD analyses showed that there were Mg, Mg17Al12, and MgO phases in the composites. The reason for the absence of Al in graphics was that Al formed the solid solution by being dissolved in Mg. Also, the C peak could not be determined for CNT. The hardness of the composites increased with the increasing sintering temperature and CNT addition. The highest hardness value was measured as 88.45 HB10 with the addition of 1.00 wt% CNT at 550?C. Free distribution of CNT in the matrix caused this hardness increase.

2013 ◽  
Vol 856 ◽  
pp. 197-200
Author(s):  
Adel Sakri ◽  
Ahmed Boutarfaia

View of the importance that has the development in the field of advanced technology transmission in human life, smart materials draws the attention of many researchers. In this contribution, we are interested in synthesizing a new smart material of the ceramic type based on Pb, Zr, Ti (PZT) doped La in the site A, and Sb, Zn in site B from a solid solution of pure oxides. The synthesized samples are thermally treated at 800°C. The techniques of x-ray diffraction (XRD) and SEM (scanning electron microscopy) are used to characterize the microstructure (the crystallographic phase), and the densities of the obtained samples were determined from their weights and volumes. The effect of sintering temperature on the microstructure properties was studied.


2011 ◽  
Vol 239-242 ◽  
pp. 3005-3008
Author(s):  
Jian Feng Zhu ◽  
Wen Wen Yang ◽  
Fang Ni Du

TiAl/Al2O3 in situ composites have been prepared by a reactive hot pressing method from Ti, Al and Nb2O5 powders. The phase transformation and the mechanism of synthesis were studied by differential scanning calorimeter (DSC) of starting powers and X-ray diffraction (XRD) of samples hot press sintered at different temperatures from 500 °C to 1300 °C. Scanning electron microscopy (SEM) coupled with energy-dispersive spectroscopy (EDS) was utilized to investigate the morphology characteristics of the products. The resultant in situ formed TiAl/Al2O3 composites exhibited multiplex structures containing TiAl, Ti3Al, Al2O3and NbAl3 phases. Fine Al2O3 particles that act as reinforcing phase are dispersed along the interface of the matrix. The formation of TiAl/Al2O3 composite involves many transitional stages. Firstly, Ti and Al reacted to form TiAl3 and Ti3Al intermediates, then Nb2O5 was reduced by Al to form the Al2O3, and finally, the competitive solid-state diffusing reactions among Ti3Al, TiAl and TiAl3 produced the final matrix phases of the resultant composite.


2011 ◽  
Vol 148-149 ◽  
pp. 1347-1350
Author(s):  
Yun Dong ◽  
Xiao Ping Lin ◽  
Run Guo Zheng ◽  
Shi Hui Jiao

The solidification microstructure of Mg-6Zn-3Y alloy under super-high pressure was investigated by using X-ray diffraction (XRD) and scanning electron microscope (SEM). The results show that the dendritic structure of Mg-6Zn-3Y alloy under super-high pressure (GPa level) can be evidently refined with the increase of solidification pressure. When the pressure increases to 2 GPa, Y element can’t solubilize in matrix of a-Mg, the primary Y solid solution is distributed in the shape of polygon block in the matrix. When the pressure is up to 4 GPa, the primary Y solid solution appears as symmetrical petaline shape. So Y solid solution exhibits the different morphology with the change of the pressure


2017 ◽  
Vol 7 (1) ◽  
pp. 27
Author(s):  
Husnah Rofiko ◽  
Yofentina Iriani ◽  
Risa Suryana

<p>Strontium Titanate (SrTiO<sub>3</sub>) with variation of sintering temperatures were prepared by co-precipitation methods. Sintering temperature were varied at 700<sup>o</sup>C, 800<sup>o</sup>C, and 900<sup>o</sup>C for 4 hours. SrTiO<sub>3</sub> samples were prepared by Strontium Nitrate and Titanium Tetrabutoxide. SrTiO<sub>3</sub> samples were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Resistance Capacitance Inductance (RCL) meter, and Sawyer Tower.  SEM images show that the sintering temperatures could affect the grain size of SrTiO<sub>3</sub>. In addition, crystal size of SrTiO<sub>3</sub> (110) affected by sintering temperature. The highest of dielectric constant is 137 on SrTiO<sub>3</sub> at sintering temperature of 900<sup>o</sup>C. Sawyer Tower curves confirmed that SrTiO3 has paraelectric property.</p><p>Keyword: Strontium Titanate, Co-precipitation, dielectrics constant, paraelectrics</p><p> </p>


2014 ◽  
Vol 46 (1) ◽  
pp. 15-21 ◽  
Author(s):  
S. Islak ◽  
D. Kır ◽  
S. Buytoz

In this study, Cu-TiC composites were successfully produced using hot pressing method. Cu-TiC powder mixtures were hot-pressed for 4 min at 600, 700 and 800?C under an applied pressure of 50 MPa. Phase composition and microstructure of the composites hot pressed at different temperatures were characterized by X-ray diffraction, scanning electron microscope, and optic microscope techniques. Microstructure studies revealed that TiC particles were distributed uniformly in the Cu matrix. With the increasing sintering temperature, hardness of composites changed between 64.5 HV0.1 and 85.2 HV0.1. The highest electrical conductivity for Cu-10 wt.% TiC composites was obtained for the sintering temperature of 800?C, with approximately 68.1% IACS.


2012 ◽  
Vol 476-478 ◽  
pp. 1031-1035
Author(s):  
Wei Min Liu ◽  
Xing Ai ◽  
Jun Zhao ◽  
Yong Hui Zhou

Al2O3-TiC-ZrO2ceramic composites (ATZ) were fabricated by hot-pressed sintering. The phases and microstructure of the composites were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The relative density and mechanical properties (flexural strength, fracture toughness and Vicker’s hardness) of the composites were tested. The results show that the microstructure of the composites was the gray core-white rim. With the increase of sintering temperature, the relative density and mechanical properties of the composites increased first and then decreased. The composite sintered at 1705°C has the highest synthetical properties, and its relative density, flexural strength, fracture toughness and Vickers hardness are 98.3%,970MPa,6.0 MPa•m1/2and 20.5GPa, respectively.


2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744031
Author(s):  
Wenjing Chen ◽  
Hui Chen ◽  
Yongjing Wang ◽  
Congchen Li ◽  
Xiaoli Wang

The Ni–Cr–Fe metal powder was deposited on EA4T steel by laser cladding technology. The microstructure and chemical composition of the cladding layer were analyzed by optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The bonding ability between the cladding layer and the matrix was measured. The results showed that the bonding between the cladding layer and the EA4T steel was metallurgical bonding. The microstructure of cladding layer was composed of planar crystals, columnar crystals and dendrite, which consisted of Cr2Ni3, [Formula: see text] phase, M[Formula: see text]C6 and Ni3B phases. When the powder feeding speed reached 4 g/min, the upper bainite occurred in the heat affected zone (HAZ). Moreover, the tensile strength of the joint increased, while the yield strength and the ductility decreased.


2014 ◽  
Vol 941-944 ◽  
pp. 280-283
Author(s):  
Xiao Yang Wang ◽  
Hong Qiang Ru

SiC particle-reinforced Cu-Fe based braking materials were fabricated by the P/M hot pressing method. The phase composition, microstructure and the worn surface of the composite were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD).The tribological properties were evaluated using a disk-on-disk type laboratory scale dynamometer. Results indicate that the friction coefficient is 0.42 in 6800rpm, 0.7MPa. With the increase of rotation speeds the coefficient of friction and stable rate were decreased.


2015 ◽  
Vol 5 (01) ◽  
pp. 31
Author(s):  
Resky Irfanita ◽  
Asnaeni Ansar ◽  
Ayu Hardianti Pratiwi ◽  
Jasruddin J ◽  
Subaer S

The objective of this study is to investigate the effect of sintering temperature on the synthesis of SiC produced from rice husk ash (RHA) and 2B graphite pencils. The SiC was synthesized by using solid state reaction method sintered at temperatures of 750°C, 1000°C and 1200°C for 26 hours, 11.5 hours and 11.5 hours, respectively. The quantity and crystallinity level of SiC phase were measured by means of Rigaku MiniFlexII X-Ray Diffraction (XRD). The microstructure of SiC was examined by using Tescan Vega3SB Scanning Electron Microscopy (SEM). The XRD results showed that the concentration (wt%) of SiC phase increases with the increasing of sintering temperature. SEM results showed that the crystallinity level of SiC crystal is improving as the sintering temperature increases


2011 ◽  
Vol 335-336 ◽  
pp. 699-703
Author(s):  
Hui Hui Tan ◽  
Zhu Xing Tang ◽  
Xia Zhao ◽  
He Zhang

This paper introduces Si2ON2-SiC ceramic fabricated by pressureless sintering method and studies the effect of additives, nitriding temperatures on bulk density, porosity, phase composition and microstructure. It is discovered that additives MgO, CeO2 can increase the densities of Si2ON2-SiC ceramic apparently, and MgO additive has a better effect than CeO2. Nitriding temperature also is an important factor. The bulk density of the specimen with MgO additive reaches maximum at 1.91 g/cm3 when sintered at 1450 °C, and the bulk density of specimen with CeO2 additive is 1.86 g/cm3 at the same condition while the bulk density of the specimen without additive is only 1.75 g/cSuperscript textm3. The X-ray diffraction and scanning electron microscopy of the specimens show that the amount of Si2ON2 increase with the sintering temperature increase. But when the temperature is higher than 1500 °C the Si2ON2 grains will decompose into Si3N4, and Si2ON2 will vanish at 1550 °C


Sign in / Sign up

Export Citation Format

Share Document