scholarly journals Hall effects on MHD flow past an accelerated plate

2008 ◽  
Vol 35 (4) ◽  
pp. 333-346 ◽  
Author(s):  
R.K. Deka

The simultaneous effects of rotation and Hall current on the hydromagnetic flow past an accelerated horizontal plate relative to a rotating fluid is presented. It is found that for given values of m (Hall parameter), M (Hartmann number) and an imposed rotation parameter ? satisfying ? = M 2m/(1 + m2), the transverse motion (transverse to the main flow) disappears and the fluid moves in the direction of the plate only. The effects of the parameters m, M and ? on the axial and transverse velocity profiles are shown graphically, whereas the effects of the parameters on the skin-friction components are shown by tabular values.

2015 ◽  
Vol 20 (1) ◽  
pp. 171-181 ◽  
Author(s):  
J.K. Sundarnath ◽  
R. Muthucumarswamy

Abstract Hall current and rotation on an MHD flow past an accelerated horizontal plate relative to a rotating fluid, in the presence of heat transfer has been analyzed. The effects of the Hall parameter, Hartmann number, rotation parameter (non-dimensional angular velocity), Grashof’s number and Prandtl number on axial and transverse velocity profiles are presented graphically. It is found that with the increase in the Hartmann number, the axial and transverse velocity components increase in a direction opposite to that of obtained by increasing the Hall parameter and rotation parameter. Also, when Ω=M2m /(1 + m2 ) , it is observed that the transverse velocity component vanishes and axial velocity attains a maximum value.


2015 ◽  
Vol 20 (3) ◽  
pp. 605-616 ◽  
Author(s):  
M. Thamizhsudar ◽  
J. Pandurangan ◽  
R. Muthucumaraswamy

Abstract A theoretical solution of flow past an exponentially accelerated vertical plate in the presence of Hall current and MHD relative to a rotating fluid with uniform temperature and mass diffusion is presented. The dimensionless equations are solved using the Laplace method. The axial and transverse velocity, temperature and concentration fields are studied for different parameters such as the Hall parameter (m), Hartmann number (M), Rotation parameter (Ω), Schmidt number, Prandtl number, thermal Grashof number (Gr) and mass Grashof number (Gc). It has been observed that the temperature of the plate decreases with increasing values of the Prandtl number and the concentration near the plate increases with decreasing values of Schmidt number. It is also observed that both axial and transverse velocities increase with decreasing values of the magnetic field parameter or rotation parameter, but the trend gets reversed with respect to the Hall parameter. The effects of parameters m, M, Ω, Gr and Gc on the axial and transverse velocity profiles are shown graphically.


Author(s):  
R. K. Deka ◽  
S. K. Das

The effects of thermal radiation on the MHD flow past an accelerated infinite vertical plate in a rotating fluid, taking Hall effect into account, has been investigated. The solutions are obtained by Laplace transformation technique. Velocity distribution (both axial and transverse) are shown graphically, whereas the numerical values of the axial and transverse components of skin-friction are listed in a table.


2017 ◽  
Vol 22 (1) ◽  
pp. 111-121
Author(s):  
V.S.A. Dhananjeya Kumaar ◽  
R. Muthucumaraswamy

Abstract An exact solution of the combined study of Hall effects on a vertical plate with a rotating fluid in the presence of a homogeneous chemical reaction of first order has been analysed. The dimensionless governing coupled partial differential equations are tackled using the usual Laplace transform technique. The sway of the Hall parameter, Hartmann number, Grashof number, Prandtl number, Schmidt number, chemical reaction parameter on the axial velocity and concentration of the fluid has been depicted graphically. When the non-dimensional angular velocity, $\Omega = {{{\it 2}M^2 } \over { {\it 1} + m.^{2} }}$ , the transverse velocity component vanishes, thereby the axial velocity of the fluid attains the maximum value. It is noted that with increase in the Hall parameter, thermal Grashof number and mass Grashof number, the axial velocity of the fluid increases significantly.


Author(s):  
U. S. Rajput ◽  
Gaurav Kumar

Effects of rotation and chemical reaction on unsteady MHD flow past an impulsively started inclined plate with variable wall temperature and mass diffusion in the presence of Hall current is studied here. Earlier we [7] have studied radiation effect on unsteady MHD flow through porous medium past an oscillating inclined plate with variable temperature and mass diffusion in the presence of Hall current. We obtained the results which were in agreement with the desired flow phenomenon. To study further, we are changing the model by considering rotation and chemical reaction. The governing equations involved in the flow model are solved by the Laplace-transform technique. The results obtained have been analyzed with the help of graphs drawn for different parameters. The numerical values obtained for the drag at boundary and Sherwood number have been tabulated. Here too, the results are found to be in agreement with the actual flow.


1980 ◽  
Vol 23 (3) ◽  
pp. 495-500
Author(s):  
V. M. Soundalgekar ◽  
S. Ravi ◽  
S. B. Hiremath

An exact solution of the MHD flow of an incompressible, electrically conducting, viscous fluid past a uniformly accelerated infinite plate has been presented. The velocity profiles are shown graphically and the numerical values of axial and transverse components of skin friction are tabulated. At high values of the Hall parameter, wt, the velocity is found to be oscillatory near the plate.


2013 ◽  
Vol 29 (2) ◽  
pp. 337-344 ◽  
Author(s):  
N. Ghara ◽  
S. Das ◽  
S. L. Maji ◽  
R. N. Jana

AbstractThe unsteady hydromagnetic flow due to torsional oscillations of a rotating disc in a viscous incompressible electrically conducting fluid which is also rotating is studied taking the effects of the Hall current and ion-slip into consideration. The governing equations are solved analytically. The results show that the inclusion of the Hall current and ion slip have important effects on the velocity distributions as well as shear stresses at the disc. The flow is characterized by two opposite circularly polarized waves, travelling with different velocities. It is found that there is a formation of two-deck boundary layers, thicknesses of which increase with increase in either Hall parameter or ion-slip parameter. The radial velocity increases with an increase in Hall parameter and the azimuthal velocity increases with an increase in either Hall parameter or ion-slip parameter. Further, it is found that the amplitude of the transverse shear stress at the disc decreases with an increase in either Hall parameter or ion-slip parameter.


Sign in / Sign up

Export Citation Format

Share Document