scholarly journals Effects of Brownian motion on freezing of PCM containing nanoparticles

2016 ◽  
Vol 20 (5) ◽  
pp. 1533-1541 ◽  
Author(s):  
Jamalabadi Abdollahzadeh ◽  
Jae Park

Enhancement of thermal and heat transfer capabilities of phase change materials with addition of nanoparticles is reported. The mixed nanofluid of phase change material and nanoparticles presents a high thermal conductivity and low heat capacity and latent heat, in comparison with the base fluid. In order to present the thermophysical effects of nanoparticles, a solidification of nanofluid in a rectangular enclosure with natural convection induced by different wall temperatures is considered. The results show that the balance between the solidification acceleration by nanoparticles and slowing-down by phase change material gives rise to control the medium temperature. It indicates that this kind of mixture has great potential in various applications which requires temperature regulation. Also, the Brownian motion of nanoparticles enhances the convective heat transfer much more than the conductive transfer.

2013 ◽  
Vol 860-863 ◽  
pp. 862-866 ◽  
Author(s):  
Yi Fei Zheng ◽  
Zhong Zhu Qiu ◽  
Jie Chen

Phase change materials in the form of emulsion (PCE) is a category of novel phase change fluid used as heat storage and transfer media. It plays an important role in commercially viable applications (energy storage, particularly).The emulsion is made of microparticles of a phase change wax (a kind of paraffin or mixture ) as a phase change material (PCM), mixed paraffin directly with water. This paper presents information on the different PCM emulsions by different researchers. It gives the method of preparation of the PCE, and makes a special effort to investigate the heat transfer phenomena and the method of enhancing the thermal conductivity of the emulsion.


Author(s):  
Ayushman Singh ◽  
Srikanth Rangarajan ◽  
Leila Choobineh ◽  
Bahgat Sammakia

Abstract This work presents an approach to optimally designing a composite with thermal conductivity enhancers (TCEs) infiltrated with phase change material (PCM) based on figure of merit (FOM) for thermal management of portable electronic devices. The FOM defines the balance between effective thermal conductivity and energy storage capacity. In present study, TCEs are in the form of a honeycomb structure. TCEs are often used in conjunction with PCM to enhance the conductivity of the composite medium. Under constrained composite volume, the higher volume fraction of TCEs improves the effective thermal conductivity of the composite, while it reduces the amount of latent heat storage simultaneously. The present work arrives at the optimal design of composite for electronic cooling by maximizing the FOM to resolve the stated trade-off. In this study, the total volume of the composite and the interfacial heat transfer area between the PCM and TCE are constrained for all design points. A benchmarked two-dimensional direct CFD model was employed to investigate the thermal performance of the PCM and TCE composite. Furthermore, assuming conduction-dominated heat transfer in the composite, a simplified effective numerical model that solves the single energy equation with the effective properties of the PCM and TCE has been developed. The effective thermal conductivity of the composite is obtained by minimizing the error between the transient temperature gradient of direct and simplified model by iteratively varying the effective thermal conductivity. The FOM is maximized to find the optimal volume fraction for the present design.


Proceedings ◽  
2019 ◽  
Vol 34 (1) ◽  
pp. 16
Author(s):  
Jiang ◽  
Liu ◽  
Yuan

In order to effectively improve the thermal performance of the thermal insulation masonry wall, the thermal bridge effect of the grey joint on the heat transfer of the wall structure was studied. A brand-new form of phase change material walls, which used phase change materials in the wall parts to build ash joints, was carried out. The application of phase change material mortar, which was different from conventional "Hamburger" phase change material walls, was demonstrated to be a useful tool to reduce the thermal coefficient of the masonry wall. Furthermore, the scale-down test and numerical simulation of the heat transfer coefficient of the phase change material wall with different distribution of ash joints were experimented and discussed, and the feasibility of the new-form phase change material wall within the error range was verified.


2020 ◽  
Vol 993 ◽  
pp. 920-926
Author(s):  
Bi Chuan Chi ◽  
Yan Yao ◽  
Su Ping Cui

The binary eutectic mixtures of fatty acid esters are promising phase change materials for energy storage application. However, the low thermal conductivity which is a common problem for organic phase change materials restricts their further and better applications. In order to solve the problem, a novel composite phase change material (CPCM) was prepared in this research by using methyl palmitate-methyl stearate (MP-MS), a typical binary eutectic mixture of fatty acid esters, as phase change material and expanded graphite (EG) as heat transfer enhancer. The heat transfer performance of MP-MS/EG CPCM was numerical simulated by finite element analysis software ABAQUS. Numerical simulation results revealed that EG could notably enhance the heat transfer performance of MP-MS eutectic mixture. The heat transfer rate and phase change reaction rate of MP-MS/EG CPCM were 14 times and 3 times that of MP-MS eutectic mixture, respectively.


2018 ◽  
Vol 172 ◽  
pp. 02001
Author(s):  
R Sathiyaraj. ◽  
R Rakesh. ◽  
N Mithran. ◽  
M Venkatesan.

Phase change materials (PCMs) are energy storage materials which can be used for maintaining a controlled thermal environment for various applications in earth and space. PCMs are used in advanced technologies in aerospace cooling applications like heat exchangers and heat pipes for re-entry vehicles and spacecraft. Paraffin is a phase change material (PCM) commonly used for energy storage-related applications. Paraffin wax exhibits slow thermal response due to low thermal conductivity value (~0.2 W/m K for most paraffin waxes). In the present work, an attempt is made to fabricate a composite PCM using graphite powder. Such a composite material has enhanced thermal conductivity along with reduced melting period which are desirable properties of a PCM during solid to liquid phase change process. The reduction in melting period is indicated by the difference in change in temperature measured by the thermocouples during a specified time. The temperature variation and solid-liquid interface formation during the melting process are experimentally studied. The results showed that composite graphite powder with paraffin can improve the total phase transition time.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4327
Author(s):  
Matthew Fong ◽  
Jundika Kurnia ◽  
Agus P. Sasmito

In many heat transfer related applications, there is a need for a stable, constant supply temperature. As a result, the integration of intermittent renewable sources of heat into these processes can prove to be challenging, requiring special temperature smoothing devices or strategies. This study focuses on the application of phase change materials integrated into a double tube heat exchanger as a possible thermal smoothing device. The objective of this study is to evaluate the ability of the exchanger to smoothen out temperature variations within the cold stream outlet while the hot stream is subject to oscillating inlet conditions. A computational fluid dynamics approach is used where a numerical model is developed, validated and then used to model the conjugate heat transfer within the heat exchanger. Four organic phase change materials (PCM) with different phase change temperatures were selected for investigation (myristic, octadecane, eicosane, and wax) to study the relationship between melting temperature and stabilization performance. A parametric study was then conducted by varying the Reynolds number of the flow as well as temperature oscillation period and amplitude to study the sensitivity of the system. The results confirm the potential of a phase change material-based thermal capacitor at dampening oscillations across the heat exchanger.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Junwei Zhang ◽  
Yan Chen ◽  
Zeguang Nie ◽  
Zhengshou Chen ◽  
Junkai Gao

AbstractIn this study, silver microspheres (SMS) were introduced into cotton stalk porous-carbon (CSP) to prepare silver microsphere doping porous-carbon (SMS-CSP), and then SMS-CSP was used as the matrix of polyethylene glycol (PEG) to synthesize shape-stable phase change material of PEG/SMS-CSP. It was found that the introduction of SMS into CSP could not only greatly improve the loading capacity of the porous-carbon for PEG, but also could increase the thermal conductivity of PEG/SMS-CSP. Additionally, the method of introducing SMS into porous-carbon had the advantages of environmental protection and simple operation. Moreover, the raw material of cotton stalk is a kind of agricultural waste, which has the merits of wide source, low price and easy to obtain. Furthermore, in the preparation of cotton stalk porous-carbon, with the increase of pyrolysis temperature the thermal conductivity of PEG/SMS-CSP could be enhanced significantly. The mechanism about the enhancement of thermal conductivity was clarified, which could provide more basic theory for the study about the thermal conductivity of shape-stable phase change materials (ss-PCMs) based on porous-carbon.


2013 ◽  
Vol 291-294 ◽  
pp. 1153-1158
Author(s):  
Quan Ying Yan ◽  
Ran Huo ◽  
Li Hang Yue ◽  
Lin Zhang ◽  
Li Li Jin

This paper investigated the heat transfer and mechanical property of phase change material (PCM) walls and common wall. Three mixtures of liquid paraffin-46# paraffin, liquid paraffin- lauric acid and capric-myristic acid were prepared and mixed respectively with high-density polyethylene (HDPE) to prepare shape-stabilized phase change materials. Then direct mixing method was used to add these materials into cement mortar in order to make phase change walls. The results shows that the temperatures and heat flow on phase change walls’ surface are all lower than those of common wall; PCMs of different thermal properties have a more and more obvious distinction in heat storage performance with the increasing content of them added in the wall; PCM walls have lower compressive strength than the common one. Results can provide the basis for the application of phase change material walls in real buildings.


Author(s):  
Jorge L. Alvarado ◽  
Charles Marsh ◽  
Curt Thies ◽  
Guillermo Soriano ◽  
Paritosh Garg

In the last decade, microencapsulated phase change material (MPCM) slurries have been proposed and studied as novel coolants for heat transfer applications. Such applications include electronics cooling, and secondary coolants in air conditioning systems among others. Experiments have shown that MPCM’s increase the overall thermal capacity of thermal systems by taking advantage of the phase change material’s latent heat of fusion. However, research has also shown that the overall heat transfer coefficient is diminished due to a reduction in the effective thermal conductivity and increased viscosity of the slurry. For this reason, there is an urgent need to modify the content of microcapsules containing phase change material to increase their effective thermal conductivity and the overall heat transport process. Our solution consists of increasing the thermal conductivity of MPCM by adding carbon nanotubes to the shell and core of the microcapsules. Carbon nanotubes have shown to increase the thermal conductivity of liquids by 40% or more in recent experiments. In this paper, MPCM slurry containing octadecane as phase change material and multi-wall carbon nanotubes (MWCNTs) embedded in the capsule material and core are compared with pure water as heat transfer fluid. Thermal and physical properties of MPCM slurry containing carbon nanotubes were determined using a differential scanning calorimeter and concentric viscometer, respectively. Experimental convective heat transfer coefficient data for MWCNT aqueous suspensions under laminar flow and constant heat flux were determined using a bench-top heat transfer loop. Experimental heat transfer results are presented.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1895
Author(s):  
Wei Jiang ◽  
Dan Liu

In this paper, a numerical calculation and application analysis of composite phase change material masonry mortar applied to wall parts are performed during the research process. Instead of the conventional “sandwich” phase change material wall, our research group mainly uses phase change materials in the wall parts to build masonry joints to reduce the thermal bridge effect. The influence of masonry joints on the heat transfer of the wall is demonstrated. A quantitative description of the transient heat transfer coefficient is obtained to measure the heat preservation performance of the phase change material wall. Furthermore, the influence of different proportions of phase change materials on the wall heat transfer in different external environments is discussed, supplemented by the influence of the working range and sensitivity on the heat transfer. In summary, the use of phase change materials in the construction of masonry joints is a great innovation for conventional “sandwich” phase change material walls, optimizing the form, the thermal bridge effect and the heat preservation performance of wall parts. The quantitative description of the transient heat transfer coefficient expands the development of wall heat transfer theories. In addition, the conclusions are of great guiding significance for the structure and the phase change material’s blending proportion for the innovative heat preservation phase change material wall.


Sign in / Sign up

Export Citation Format

Share Document