scholarly journals Mechanical transmission system of loader based on hydraulic hybrid technology

2021 ◽  
Vol 25 (6 Part A) ◽  
pp. 4233-4240
Author(s):  
Haifei Wang ◽  
Shimin Yang ◽  
Tan Lu

In order to solve the problems of high energy consumption, high noise and pollution gas emission existing in the mechanical transmission system of loader, a research on the mechanical transmission system of loader based on hydraulic hybrid technology is proposed. The mechanical energy and heat energy are generated by the mechanical operation of the loader, which are converted into hydraulic energy and output to the drive system. According to the fast response characteristics and high power density characteristics of the hydraulic power system relative to the thermal engine, the dynamic model of the hydraulic hybrid drive system of the loader is established. The double fuzzy PID control method is used to identify and modify the unknown load and power parameters of the drive system. Through the experiment, it is concluded that the power parameter matching of the transmission system using the hydraulic hybrid technology is more optimized, the application effect is good, and the efficiency of the power transmission system can be maximized.

2018 ◽  
Vol 10 (1) ◽  
pp. 168781401774773 ◽  
Author(s):  
Chang Lyu ◽  
Zhao Yanqing ◽  
Lyu Meng

In hydraulic mechanical transmission loaders, a hydraulic torque converter can prevent an engine from stalling due to overloading of the loader during the spading process; however, the hydraulic torque converter also reduces the loader’s fuel economy because of its low transmission efficiency. To address this issue, the study designs an output-power-split transmission system that is applied to a hybrid loader. The designed transmission system removes the hydraulic torque converter in the power transmission system of a traditional loader and adopts a planetary gear set with a compact structure as the dynamic coupling element, thus allowing the output power of the loader to be split transmitted. During shoveling, the loader power-split transmission system based on a planetary gear set can prevent the motor from plugging and over-burning under conditions that ensure that the traction does not decrease. In addition, the transmission efficiency and loader fuel economy are higher in the proposed transmission system than in the power transmission system of a traditional loader. The test results show that the transmission efficiency of the designed system was 13.2% higher than that of the traditional hydraulic mechanical transmission loader.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5014
Author(s):  
Jixiang Yang ◽  
Yongming Bian ◽  
Meng Yang ◽  
Jie Shao ◽  
Ao Liang

Oil shortages and environmental pollution are attracting worldwide attention incrementally. Hybrid falls within one of the effective techniques for those two problems. Taking the loader with high energy consumption and high emission as the target, combined with the hydraulic hybrid technology with high power density and strong energy storage capacity, the parallel hydraulic hybrid loader (PHHL) based on brake energy regeneration is proposed. Firstly, the dynamic models of the key components of the PHHL are established, and the parameters of the part which coincides with the ordinary loader are corrected based on the V-type duty cycle. Then, consid-ering the energy recovery efficiency as well as the characteristics of the loader from the V-type duty cycle, the parameters for several major parts of the energy regeneration system (ERS) were calculated and matched. Then, based on the initial matching, the improved adaptive genetic al-gorithm (AGA) is employed to optimize the control variable of the control strategy and the design parameters of ERS to enhance the economic benefit and performance of the ERS. Furthermore, a simulation validation was conducted. Simulation results show that the ERS with optimized pa-rameters could improve the fuel-saving effect by 25% compared to the ERS with initial parameters, which indicated the rationality of the optimized parameters. Finally, the fuel consumption test of the PHHL prototype under the V-type duty cycle is performed. The results show that the PHHL with the optimization scheme can achieve 9.12% fuel saving, which is on the brink of the potential of brake energy recovery and verifies the feasibility of applying hydraulic hybrid technology on the loader.


2021 ◽  
Vol 2085 (1) ◽  
pp. 012005
Author(s):  
Liping Zhou

Abstract Controlling the load balance of multi electromechanical transmission system is the core and difficulty of metro vehicles. In order to effectively control the load of multi electromechanical transmission system and ensure the load balance of multi electromechanical transmission system. A load balancing control method of multi electromechanical transmission system based on dynamic programming is proposed. By designing the structure of the transmission system filter, the low DC resonant frequency of the inverter is maintained and the grid harmonics with higher order effect are suppressed. The rotor field oriented correction method based on dynamic programming can improve the torque performance of traction electric drive system, control the DC side active damping oscillation, and realize the load balance control of multi electromechanical drive system. The simulation results show that the proposed method avoids the wrong rise of multi electromechanical voltage and the saturation of regulator output caused by inaccurate magnetic field orientation, can effectively control the load of multi electromechanical transmission system, ensure the load balance of multi electromechanical transmission system, and provide an effective reference for the load balance control of multi electromechanical transmission system.


2020 ◽  
Vol 14 ◽  
Author(s):  
Chen Guoqiang ◽  
Yang Zhifei

Background: The torsional vibration of the power transmission system has heavy effect on the ride comfort and safety of the vehicle, which has attracted plenty of research. Therefore, aiming at the torsional vibration problem of the electric vehicle power transmission system, enough study on how to suppress the torsional vibration is clearly of great benefit. Objective: The goal of the work is to explore the new method to suppress the torsional vibration. The main contribution is that the parameter of the power transmission system is optimized and the adaptive fuzzy PID controller is proposed to be utilized and optimized to suppress the torsional vibration. Methods: An optimization objective function including the angular acceleration of the motor shaft, the decelerator and differential assembly and the half shaft is established as the output of the genetic algorithm fitness value. The error combination of square root of the angular acceleration of the motor shaft, the decelerator and differential assembly and the half shaft is adopted as the input of the fuzzy inference controller and the PID controller, which can significantly simplify the fuzzy rule and the structure of the controllers. Results: The proposed method significantly reduces the torque amplitude of the motor shaft, the decelerator and differential assembly, the transmission half shaft, and the overall vibration amplitude. The maximum reduced vibration amplitude change is up to 41.22% and 87.04% respectively after parameter optimization and fuzzy PID control in the example. Conclusion: The comprehensive utilization of parameter optimization and adaptive fuzzy PID control can successfully suppress the torsional vibration phenomenon of the power transmission system, and the torsional amplitude of the angular velocity and angular acceleration decreases significantly. Therefore, the vehicle noise can be reduced and the stability can be improved. The study lays a foundation for solving the torsional vibration problem and the mechanical optimal design of the vehicle transmission system.


2014 ◽  
Vol 989-994 ◽  
pp. 3117-3121
Author(s):  
Liang Luo ◽  
Wei Min Zhang ◽  
Yue Lei Zhang

The motion commands to feed drives constitute a major source for excitation of the vibrations. In this paper the vibration of feed drive caused by the motion commands is simulated by using a mathematic method. The mechanical transmission system is modeled as a dual inertia system. Three typical trajectories are used to analyze the effect of motion profiles on feed drive vibration by using a simulation model of feed drive controller.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6279
Author(s):  
Jian Yang ◽  
Tiezhu Zhang ◽  
Hongxin Zhang ◽  
Jichao Hong ◽  
Zewen Meng

To simplify the layout of a purely electric vehicle transmission system and improve the acceleration performance of the vehicle, this paper utilizes the characteristics of the large torque of a hydraulic transmission system and proposes a new mechanical–electric–hydraulic dynamic coupling drive system (MEH-DCDS). It integrates the traditional motor and the swashplate hydraulic pump/motor into one, which can realize the mutual conversion between the mechanical energy, electrical energy, and hydraulic energy. This article explains its working principle and structural characteristics. At the same time, the mathematical model for the key components is established and the operation mode is divided into various types. Based on AMESim software, the article studies the dynamic characteristics of the MEH-DCDS, and finally proposes a method that combines real-time feedback of the accumulator output torque with PID control to complete the system simulation. The results show that the MEH-DCDS vehicle has a starting time of 4.52 s at ignition, and the starting performance is improved by 40.37% compared to that of a pure motor drive system vehicle; after a PID adjustment, the MEH-DCDS vehicle’s starting time is shortened by 1.04 s, and the acceleration performance is improved by 23.01%. The results indicated the feasibility of the system and the power performance was substantially improved. Finally, the system is integrated into the vehicle and the dynamic performance of the MEH-DCDS under cycle conditions is verified by joint simulation. The results show that the vehicle is able to follow the control speed well when the MEH-DCDS is loaded on the vehicle. The state-of-charge (SOC) consumption rate is reduced by 20.33% compared to an electric vehicle, while the MEH-DCDS has an increased range of 45.7 m compared to the EV. This improves the energy efficiency and increases the driving range.


Sign in / Sign up

Export Citation Format

Share Document