Telemetered Heart Rate as a Measure of Metabolic Rate in the Lemon Shark, Negaprion brevirostris

Copeia ◽  
1991 ◽  
Vol 1991 (4) ◽  
pp. 942 ◽  
Author(s):  
Jill Scharold ◽  
Samuel H. Gruber
1984 ◽  
Vol 247 (4) ◽  
pp. H495-H507 ◽  
Author(s):  
L. E. Ford

The question of the proper size denominator for metabolic indices is addressed. Metabolic rate among different species is proportional to the 3/4 power of body weight, not surface area. Muscle power also varies with the 3/4 power of weight, suggesting that metabolic rate is determined mainly by muscle power. Power-to-weight ratio, specific metabolic rate, and a number of metabolic periods, including heart rate, all vary inversely with the 1/4 power of body weight. Thus the relative times required for physiological and pathological processes in different species may be estimated from the average resting heart rate for the species. There are not many small humans among athletic record holders in events involving acceleration and hill climbing, as would be expected if they had higher power-to-weight ratios. Thus the relationship between size and metabolic rate in different species should not be applied within the single species of humans. Evidence is reviewed showing that basal metabolic rate in humans is determined mainly by lean body mass.


1957 ◽  
Vol 190 (3) ◽  
pp. 425-428 ◽  
Author(s):  
Richard M. Hoar ◽  
William C. Young

Oxygen consumption and heart rate during pregnancy were measured in untreated, thyroxin-injected and thyroidectomized guinea pigs given I131. From impregnation until parturition, oxygen consumption increased 7.9% in untreated females. The increase continued until 5 days postpartum when a sharp decrease occurred. The increase is not accounted for by growth of the fetal mass. Comparable increases occurred in thyroxin-injected (16.2%) and thyroidectomized (11.9%) females, although the levels throughout were higher and lower, respectively, than in intact females. Heart rate did not increase. On the contrary, statistically significant decreases occurred in the untreated and thyroxin-injected females. Although the mechanism associated with the increased metabolic rate is not known, the possibility of thyroid participation would seem to be excluded. Involvement of the adrenal cortex is suggested by morphological differences in the cells of the zona fasciculata in pregnant and nonpregnant females and by evidence cited from other studies.


2021 ◽  
Author(s):  
Heiko T. Jansen ◽  
Brandon Evans Hutzenbiler ◽  
Hannah R. Hapner ◽  
Madeline L. McPhee ◽  
Anthony M. Carnahan ◽  
...  

ABSTRACTHibernation is characterized by suppression of many physiological processes. To determine if this state is reversible in a non-food caching species, we fed hibernating grizzly bears (Ursus arctos horribilis) glucose for 10 days to replace 53% or 100% of the estimated minimum daily energetic cost of hibernation. Feeding caused serum concentrations of glycerol and ketones (ß-hydroxybutyrate) to return to active season levels irrespective of the amount of glucose fed. By contrast, free-fatty acids and indices of metabolic rate, such as general activity, heart rate, and strength of the daily heart rate rhythm and insulin sensitivity were restored to roughly 50% of active season levels. Body temperature was unaffected by feeding. To determine the contribution of adipose to these metabolic effects of glucose feeding we cultured bear adipocytes collected at the beginning and end of the feeding and performed metabolic flux analysis. We found a roughly 33% increase in energy metabolism after feeding. Moreover, basal metabolism before feeding was 40% lower in hibernation cells compared to fed cells or active cells cultured at 37°C, thereby confirming the temperature independence of metabolic rate. The partial suppression of circulating FFA with feeding likely explains the incomplete restoration of insulin sensitivity and other metabolic parameters in hibernating bears. Further suppression of metabolic function is likely an active process. Together, the results provide a highly controlled model to examine the relationship between nutrient availability and metabolism on the hibernation phenotype in bears.


2003 ◽  
Vol 117 (3) ◽  
pp. 430 ◽  
Author(s):  
Eva Fuglei ◽  
Nils A. Øritsland

This work was conducted to determine effect of season and starvation on metabolic rate during running in the Arctic Fox (Alopex lagopus) on Svalbard (78°55’N, 11°56’E), Norway. Indirect calorimetry was used to measure metabolic rate of foxes running on a treadmill and heart rate was monitored using implanted radio transmitters. The relationship between heart rate and metabolic rate was also examined. Metabolic rate increased with running speed. In July the metabolic rate during running almost fitted general equations predicted for mammals, while it was up to 20% lower in January, indicating seasonal variation in metabolic rate. There was a significant positive linear relationship between heart rate and weight specific metabolic rate, suggesting that heart rate can be used as an indicator of metabolic rate. Starvation for 11 days decreased the net cost of running by 13% in January and 17% in July, suggesting that a starved fox runs more energetically efficient than when fed. Heart rate measured in July decreased by 27% during starvation. Re-feeding reversed the starvation-induced reduction in metabolic rate and heart rate during running almost up to post-absorptive levels. The present results are from one fox, and must be considered as preliminary data until further studies are conducted.


Metabolism ◽  
1980 ◽  
Vol 29 (11) ◽  
pp. 1003-1012 ◽  
Author(s):  
M. Krotkiewski ◽  
G. Garellick ◽  
L. Sjöström ◽  
Gunnel Persson ◽  
T. Bjurö ◽  
...  

1995 ◽  
Vol 226 (3) ◽  
pp. 309-329 ◽  
Author(s):  
Philip J. Motta ◽  
Cheryl A. D. Wilga

2018 ◽  
Vol 14 (7) ◽  
pp. 20180063 ◽  
Author(s):  
Andreas Ekström ◽  
Michael Axelsson ◽  
Albin Gräns ◽  
Jeroen Brijs ◽  
Erik Sandblom

Cardiac oxygenation is achieved via both coronary arterial and luminal venous oxygen supply routes in many fish species. However, the relative importance of these supplies for cardiac and aerobic metabolic performance is not fully understood. Here, we investigated how coronary artery ligation in rainbow trout ( Oncorhynchus mykiss ), implanted with heart rate loggers, affected cardiorespiratory performance in vivo . While coronary ligation significantly elevated resting heart rate, the standard metabolic rate was unchanged compared to sham-treated controls. However, coronary ligation reduced the maximum metabolic rate while heart rate remained unchanged following enforced exercise. Thus, coronary ligation reduced metabolic and heart rate scopes by 29% and 74%, respectively. Our findings highlight the importance of coronary oxygen supply for overall cardiorespiratory performance in salmonid fish, and suggest that pathological conditions that impair coronary flow (e.g. coronary arteriosclerosis) constrain the ability of fish to cope with metabolically demanding challenges such as spawning migrations and environmental warming.


Sign in / Sign up

Export Citation Format

Share Document