Little Ice Age Evidence from a South-Central North American Ice Core, U.S.A.

1996 ◽  
Vol 28 (1) ◽  
pp. 35 ◽  
Author(s):  
D. L. Naftz ◽  
R. W. Klusman ◽  
R. L. Michel ◽  
P. F. Schuster ◽  
M. M. Reddy ◽  
...  
2018 ◽  
Vol 14 (11) ◽  
pp. 1625-1637 ◽  
Author(s):  
Mackenzie M. Grieman ◽  
Murat Aydin ◽  
Joseph R. McConnell ◽  
Eric S. Saltzman

Abstract. In this study, vanillic acid was measured in the Tunu ice core from northeastern Greenland in samples covering the past 1700 years. Vanillic acid is an aerosol-borne aromatic methoxy acid, produced by the combustion of lignin during biomass burning. Air mass trajectory analysis indicates that North American boreal forests are likely the major source region for biomass burning aerosols deposited to the ice core site. Vanillic acid levels in the Tunu ice core range from  < 0.005 to 0.08 ppb. Tunu vanillic acid exhibits centennial-scale variability in pre-industrial ice, with elevated levels during the warm climates of the Roman Warm Period and Medieval Climate Anomaly, and lower levels during the cooler climates of the Late Antique Little Ice Age and the Little Ice Age. Analysis using a peak detection method revealed a positive correlation between vanillic acid in the Tunu ice core and both ammonium and black carbon in the North Greenland Eemian Ice Drilling (NEEM) project ice core from 600 to 1200 CE. The data provide multiproxy evidence of centennial-scale variability in North American high-latitude fire during this time period.


2005 ◽  
Vol 64 (2) ◽  
pp. 272-278 ◽  
Author(s):  
Kam-biu Liu ◽  
Carl A. Reese ◽  
Lonnie G. Thompson

AbstractThis paper presents a high-resolution ice-core pollen record from the Sajama Ice Cap, Bolivia, that spans the last 400 yr. The pollen record corroborates the oxygen isotopic and ice accumulation records from the Quelccaya Ice Cap and supports the scenario that the Little Ice Age (LIA) consisted of two distinct phases�"a wet period from AD 1500 to 1700, and a dry period from AD 1700 to 1880. During the dry period xerophytic shrubs expanded to replace puna grasses on the Altiplano, as suggested by a dramatic drop in the Poaceae/Asteraceae (P/A) pollen ratio. The environment around Sajama was probably similar to the desert-like shrublands of the Southern Bolivian Highlands and western Andean slopes today. The striking similarity between the Sajama and Quelccaya proxy records suggests that climatic changes during the Little Ice Age occurred synchronously across the Altiplano.


1990 ◽  
Vol 14 ◽  
pp. 199-204 ◽  
Author(s):  
Ellen Mosley-Thompson ◽  
Lonnie G. Thompson ◽  
Pieter M. Grootes ◽  
N. Gundestrup

The 550-year records of δ18O and dust concentrations from Siple Station, Antarctica suggest warmer and less dusty atmospheric conditions from 1600 to 1830 A.D. which encompasses much of the northern hemisphere Little Ice Age (LIA). Dust and δ18O data from South Pole Station indicate that the opposite conditions (e.g. cooler and more dusty) were prevalent there during the LIA. Meteorological data from 1945–85 show that the LIA temperature opposition between Amundsen-Scott and Siple, inferred from δ18O, is consistent with the present spatial distribution of surface temperature. There is some observational evidence suggesting that under present conditions stronger zonal westerlies produce a temperature pattern similar to that of the LIA. These regional differences demonstrate that a suite of spatially distributed, high resolution ice-core records will be necessary to characterize the LIA in Antarctica


Author(s):  
Adam Sookdeo ◽  
Bernd Kromer ◽  
Florian Adolphi ◽  
Jürg Beer ◽  
Nicolas Brehm ◽  
...  

&lt;p&gt;The Younger Dryas stadial (YD) was a return to glacial-like conditions in the North Atlantic region that interrupted deglacial warming around 12900 cal BP (before 1950 AD). Terrestrial and marine records suggest this event was initiated by the interruption of deep-water formation arising from North American freshwater runoff, but the causes of the millennia-long duration remain unclear. To investigate the solar activity, a possible YD driver, we exploit the cosmic production signals of tree-ring radiocarbon (&lt;sup&gt;14&lt;/sup&gt;C) and ice-core beryllium-10 (&lt;sup&gt;10&lt;/sup&gt;Be). Here we present the highest temporally resolved dataset of &lt;sup&gt;14&lt;/sup&gt;C measurements (n = 1558) derived from European tree rings that have been accurately extended back to 14226 cal BP (&amp;#177;8, 2-&amp;#963;), allowing precise alignment of ice-core records across this period. We identify a substantial increase in &lt;sup&gt;14&lt;/sup&gt;C and &lt;sup&gt;10&lt;/sup&gt;Be production starting at 12780 cal BP is comparable in magnitude to the historic Little Ice Age, being a clear sign of grand solar minima. We hypothesize the timing of the grand solar minima provides a significant amplifying factor leading to the harsh sustained glacial-like conditions seen in the YD.&lt;/p&gt;


1986 ◽  
Vol 26 (1) ◽  
pp. 27-48 ◽  
Author(s):  
Stephen C. Porter

Time series depicting mountain glacier fluctuations in the Alps display generally similar patterns over the last two centuries, as do chronologies of glacier variations for the same interval from elsewhere in the Northern Hemisphere. Episodes of glacier advance consistently are associated with intervals of high average volcanic aerosol production, as inferred from acidity variations in a Greenland ice core. Advances occur whenever acidity levels rise sharply from background values to reach concentrations ≥1.2 μequiv H+/kg above background. A phase lag of about 10–15 yr, equivalent to reported response lags of Alpine glacier termini, separates the beginning of acidity increases from the beginning of subsequent ice advances. A similar relationship, but based on limited and less-reliable historical data and on lichenometric ages, is found for the preceding 2 centuries. Calibrated radiocarbon dates related to advances of non-calving and non-surging glaciers during the earlier part of the Little Ice Age display a comparable consistent pattern. An interval of reduced acidity values between about 1090 and 1230 A.D. correlates with a time of inferred glacier contraction during the Medieval Optimum. The observed close relation between Noothern Hemisphere glacier fluctuations and variations in Greenland ice-core acidity suggests that sulfur-rich aerosols generated by volcanic eruptions are a primary forcing mechanism of glacier fluctuations, and therefore of climate, on a decadal scale. The amount of surface cooling attributable to individual large eruptions or to episodes of eruptions is simlar to the probable average temperature reduction during culminations of Little Ice Age alacier advances (ca. 0.5°–1.2°C), as inferred from depression of equilibrium-line altitudes.


2018 ◽  
Vol 115 (49) ◽  
pp. 12413-12418 ◽  
Author(s):  
Melinda R. Nicewonger ◽  
Murat Aydin ◽  
Michael J. Prather ◽  
Eric S. Saltzman

Biomass burning drives changes in greenhouse gases, climate-forcing aerosols, and global atmospheric chemistry. There is controversy about the magnitude and timing of changes in biomass burning emissions on millennial time scales from preindustrial to present and about the relative importance of climate change and human activities as the underlying cause. Biomass burning is one of two notable sources of ethane in the preindustrial atmosphere. Here, we present ice core ethane measurements from Antarctica and Greenland that contain information about changes in biomass burning emissions since 1000 CE (Common Era). The biomass burning emissions of ethane during the Medieval Period (1000–1500 CE) were higher than present day and declined sharply to a minimum during the cooler Little Ice Age (1600–1800 CE). Assuming that preindustrial atmospheric reactivity and transport were the same as in the modern atmosphere, we estimate that biomass burning emissions decreased by 30 to 45% from the Medieval Period to the Little Ice Age. The timing and magnitude of this decline in biomass burning emissions is consistent with that inferred from ice core methane stable carbon isotope ratios but inconsistent with histories based on sedimentary charcoal and ice core carbon monoxide measurements. This study demonstrates that biomass burning emissions have exceeded modern levels in the past and may be highly sensitive to changes in climate.


Finisterra ◽  
2012 ◽  
Vol 44 (87) ◽  
Author(s):  
João Santos ◽  
Carlos Córdova

The study of glacial landforms and deposits is important, as it is difficult to observe processes under modern glaciers and ice-sheets. Thus landscapes and sediments that are the product of present glaciation can give insight into processes that occurred during  pleistocene times. This study investigates the genesis of little ice age glacial landforms present in portage Glacier, South-central Alaska. The present day moraine morphology and sedimentology in portage Glacier valley reveals the presence of two types of till and moraines. The clast-rich sandy diamicton present on the 1852 moraine is interpreted to be a basal till indicating this feature is a push moraine representing an advance or a standstill position of portage Glacier in 1852. The moderately sorted gray sandy boulder gravel present on the 1900 and 1922 moraines is interpreted to be an ice-marginal deposit (ablation till) with a mixture of supraglacial and glaciofluvial sediments deposited by slumping and stream sorting processes. All of these features are interpreted to be ablation moraines representing glacier retreat and moraine building in 1900 and1922.


Sign in / Sign up

Export Citation Format

Share Document