Leaf Lifespans of High-Elevation, Aseasonal Andean Shrub Species in Relation to Leaf Traits and Leaf Habit

1998 ◽  
Vol 7 (6) ◽  
pp. 457 ◽  
Author(s):  
Matthias Diemer
2021 ◽  
Author(s):  
Shanshan Yang ◽  
Frank J. Sterck ◽  
Ute Sass-Klaassen ◽  
J. Hans C. Cornelissen ◽  
Richard S.P. van Logtestijn ◽  
...  

Abstract A central paradigm in comparative ecology is that species sort out along a global economic strategy spectrum, ranging from slow to fast growth. Many studies evaluated plant strategy spectra for leaf traits, b u t few studies evaluated stem strategy spectra using a comprehensive set of anatomical, chemical and morphological traits, addressing key stem functions of different stem compartments (inner wood, outer wood and bark). This study evaluates how stem traits vary in the wood and bark of temperate tree species, and whether a slow-fast growth strategy spectrum exists and what traits make up this plant strategy spectrum. For 14 temperate gymnosperm and angiosperm species, 20 traits belonging to six key stem functions were measured for three stem compartments. Both across and within gymnosperms and angiosperms, a slow-fast stem strategy spectrum is found. Gymnosperms have slow traits and showed converging stem strategies because of their uniform tracheids. Angiosperms have fast traits and showed diverging stem strategies because of a wider array of tissues (vessels, parenchyma and fibers) and vessel size and arrangements (ring-porous versus diffuse porous). Gymnosperms showed a main trade-off between hydraulic efficiency and safety, and angiosperms showed a main trade-off between ‘slow’ diffuse porous species and ‘fast’ ring porous species. The slow traits of gymnosperms allow for a high hydraulic safety, an evergreen leaf habit and steady but slow growth makes them successful in unproductive habitats whereas the fast traits of angiosperms allow for high conductivity, a deciduous leaf habit and fast growth which makes them successful in productive habitats.


Author(s):  
Damonmi E. Dkhar Afaq Majid Wani

The study and survey which was carried out to identify and assess diversity of plant species of sub tropical pine forest of Meghalaya was conducted during 2020-2021 at three different elevation stands located at 982 m (low-elevation stand), 1485 m (mid-elevation stand) and at 1816 m (high-elevation stand). Pinus kesiya was found to be the most dominant from all the three stand. A total of 34species of trees belonging to 19 families were recorded which consisted a total number of 857 individuals of trees, 14 species of shrubs belonging to 10 families recorded a total number of 866 individuals, and an overall occurrence of 20 species of herbaceous species belonging to 13 families recorded a total number of 670 individuals. Elaeagnus conferta was maximum for IVI in both high and mid elevation stand while Lantana camara showed maximum IVI in the low elevation. The herbaceous species diversity, richness and evenness indices was highest in high elevation and lowest in the low elevation, while herbaceous species of dominance showed a reverse trend. Tree and shrub species of the three elevation stand were quite similar in the mid and low elevation stand. The diversity richness of indigenous forest shows considerable variation in occurrence of species between different altitudes. Most of the species in the study area have medicinal value and socio-economic importance. Therefore, there is a need for necessary action towards sustainability of forest and conservation of species at large.


2017 ◽  
Vol 21 (3) ◽  
pp. 1421-1438 ◽  
Author(s):  
Chuan Yuan ◽  
Guangyao Gao ◽  
Bojie Fu

Abstract. Stemflow transports nutrient-enriched precipitation to the rhizosphere and functions as an efficient terrestrial flux in water-stressed ecosystems. However, its ecological significance has generally been underestimated because it is relatively limited in amount, and the biotic mechanisms that affect it have not been thoroughly studied at the leaf scale. This study was conducted during the 2014 and 2015 rainy seasons at the northern Loess Plateau of China. We measured the branch stemflow volume (SFb), shrub stemflow equivalent water depth (SFd), stemflow percentage of incident precipitation (SF %), stemflow productivity (SFP), funnelling ratio (FR), the meteorological characteristics and the plant traits of branches and leaves of C. korshinskii and S. psammophila. This study evaluated stemflow efficiency for the first time with the combined results of SFP and FR, and sought to determine the inter- and intra-specific differences of stemflow yield and efficiency between the two species, as well as the specific bio-/abiotic mechanisms that affected stemflow. The results indicated that C. korshinskii had a greater stemflow yield and efficiency at all precipitation levels than that of S. psammophila. The largest inter-specific difference generally occurred at the 5–10 mm branches during rains of  ≤  2 mm. Precipitation amount was the most influential meteorological characteristic that affected stemflow yield and efficiency in these two endemic shrub species. Branch angle was the most influential plant trait on FR. For SFb, stem biomass and leaf biomass were the most influential plant traits for C. korshinskii and S. psammophila, respectively. For SFP of these two shrub species, leaf traits (the individual leaf area) and branch traits (branch size and biomass allocation pattern) had a great influence during lighter rains  ≤  10 mm and heavier rains  >  15 mm, respectively. The lower precipitation threshold to start stemflow allowed C. korshinskii (0.9 mm vs. 2.1 mm for S. psammophila) to employ more rains to harvest water via stemflow. The beneficial leaf traits (e.g., leaf shape, arrangement, area, amount) might partly explain the greater stemflow production of C. korshinskii. Comparison of SFb between the foliated and manually defoliated shrubs during the 2015 rainy season indicated that the newly exposed branch surface at the defoliated period and the resulting rainfall intercepting effects might be an important mechanism affecting stemflow in the dormant season.


2012 ◽  
Vol 23 (6) ◽  
pp. 1114-1125 ◽  
Author(s):  
Severin David Howard Irl ◽  
Manuel Jonas Steinbauer ◽  
Wolfgang Babel ◽  
Carl Beierkuhnlein ◽  
Gesche Blume-Werry ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1626
Author(s):  
Gui-Qing Xu ◽  
Stefan K. Arndt ◽  
Claire Farrell

Identifying the drought-tolerance traits of plant species originating from a moisture gradient will increase our understanding of the differences and similarities in plant drought tolerance. However, which traits can be used to evaluate drought tolerance remain an open question. Here, we conducted a common-garden experiment on 37 shrub species originating from desert to humid regions. The correlations between plant traits and the native environmental conditions were studied. Leaf sizes and Huber values were significantly correlated with most climate variables of the shrubs’ origins. The osmotic potentials at full turgor (π100), turgor loss point (ΨTLP), and midday leaf water potential (Ψmid) were significantly correlated with most climate variables of their origins. We proposed using leaf sizes, Huber values, and ΨTLP as predictors of drought tolerance across shrub species and shrub biomes. Statistically significant correlations were found between π100, ΨTLP, and specific leaf area (SLA). However, owing to the weak correlations between SLA and the climate variables of the shrubs origins and between Huber values and leaf size and turgor loss traits, it was difficult to integrate leaf morphological traits with physiological traits to find a simple way to accurately quantify drought-tolerance-related differences among these shrub species.


2001 ◽  
Vol 79 (9) ◽  
pp. 1066-1075 ◽  
Author(s):  
C B Lal ◽  
C Annapurna ◽  
A S Raghubanshi ◽  
J S Singh

We examined 90 dry tropical tree species growing on contrasting soil types (relatively infertile Ultisol and more fertile Inceptisol) for leaf traits such as leaf habit, specific leaf mass (SLM, leaf dry mass per leaf area), leaf chemistry (nutrient concentrations and C/N ratios), and nutrient resorption. Across the species, SLM ranged from 4.06 to 15.74 mg·cm–2 in mature leaves and from 2.60 to 15.12 mg·cm–2 in senesced leaves. Mature leaf N and P concentrations varied from 0.86% to 4.11% and 0.13% to 0.21%, respectively. Senesced leaf N concentrations varied from 0.49% to 1.90% and P from 0.04% to 0.47%. Resorption efficiencies varied from 26% to 83% (mean = 58.32% ± 1.20%) for N and from 16% to 80% (mean = 49.57% ± 1.48%) for P indicating that the woody species of dry tropical environments resorbed different nutrients in substantial amounts to support new growth. Deciduous species had greater resorbed nutrient pools and resorption efficiencies than evergreen species. Compared with the nutrient-rich environment, species from the nutrient-poor environment had a lower resorbed P pool and lower resorption efficiencies for N and P, but had similar N and P concentrations in mature leaves. Resorption efficiencies for C, N, and P were generally correlated, suggesting that the resorbed C pool acted as a vehicle for mobilizing nutrients, especially N. Species with a low or high C/N ratio in senesced leaf and a low or high N resorption efficiency occurred in both nutrient-poor and nutrient-rich environments, as well as among deciduous and evergreen leaf habits, indicating individualistic adaptations to optimize the efficiency of nutrient resource use and conservation of the dry tropical woody vegetation.Key words: leaf chemistry, leaf traits, resorption efficiency, resorbed nutrient pools, substrate-quality stability.


2021 ◽  
Author(s):  
Ke-Yan Zhang ◽  
Da Yang ◽  
Yun-Bing Zhang ◽  
David S Ellsworth ◽  
Kun Xu ◽  
...  

Abstract The scandent shrub plant form is a variant of liana that has upright and self-supporting stems when young but later becomes a climber. We aimed to explore the associations of stem and leaf traits among sympatric lianas, scandent shrubs and trees, and the effects of growth form and leaf habit on variation in stem or leaf traits. We measured 16 functional traits related to stem xylem anatomy, leaf morphology and nutrient stoichiometry in eight liana, eight scandent shrub and 21 tree species co-occurring in a subalpine cold temperate forest at an elevation of 2,600–3,200 m in Southwest China. Overall, lianas, scandent shrubs and trees were ordered along a fast-slow continuum of stem and leaf functional traits, with some traits overlapping. We found a consistent pattern of lianas > scandent shrubs > trees for hydraulically weighted vessel diameter, maximum vessel diameter and theoretical hydraulic conductivity. Vessel density and sapwood density showed a pattern of lianas = scandent shrubs < trees, and lianas < scandent shrubs = trees, respectively. Lianas had significantly higher specific leaf area and lower carbon concentration than co-occurring trees, with scandent shrubs showing intermediate values that overlapped with lianas and trees. The differentiation among lianas, scandent shrubs and trees was mainly explained by variation in stem traits. Additionally, deciduous lianas were positioned at the fast end of the trait spectrum, and evergreen trees at the slow end of the spectrum. Our results showed for the first time clear differentiation in stem and leaf traits among sympatric liana, scandent shrub and tree species in a subalpine cold temperate forest. This work will contribute to understanding the mechanisms responsible for variation in ecological strategies of different growth forms of woody plants.


Sign in / Sign up

Export Citation Format

Share Document