Erratum: Reduced Genetic Diversity in Eelgrass Transplantations Affects Both Population Growth and Individual Fitness

2002 ◽  
Vol 12 (1) ◽  
pp. 317
2011 ◽  
Vol 278 (1721) ◽  
pp. 3142-3151 ◽  
Author(s):  
Tanya L. Russell ◽  
Dickson W. Lwetoijera ◽  
Bart G. J. Knols ◽  
Willem Takken ◽  
Gerry F. Killeen ◽  
...  

Understanding the endogenous factors that drive the population dynamics of malaria mosquitoes will facilitate more accurate predictions about vector control effectiveness and our ability to destabilize the growth of either low- or high-density insect populations. We assessed whether variation in phenotypic traits predict the dynamics of Anopheles gambiae sensu lato mosquitoes, the most important vectors of human malaria. Anopheles gambiae dynamics were monitored over a six-month period of seasonal growth and decline. The population exhibited density-dependent feedback, with the carrying capacity being modified by rainfall (97% w AIC c support). The individual phenotypic expression of the maternal ( p = 0.0001) and current ( p = 0.040) body size positively influenced population growth. Our field-based evidence uniquely demonstrates that individual fitness can have population-level impacts and, furthermore, can mitigate the impact of exogenous drivers (e.g. rainfall) in species whose reproduction depends upon it. Once frontline interventions have suppressed mosquito densities, attempts to eliminate malaria with supplementary vector control tools may be attenuated by increased population growth and individual fitness.


Author(s):  
Mireia Vidal-Villarejo ◽  
Fabian Freund ◽  
Hendrik Hanekamp ◽  
Andreas von Tiedemann ◽  
Karl Schmid

AbstractSetosphaeria turcica is a major fungal pathogen of maize and causes the foliar disease Northern corn leaf blight (NCLB). It originates from tropical regions and expanded into Central Europe since the 1980s, simultaneously with a rapid increase of maize cultivation area in this region. To investigate evolutionary processes influencing the rapid expansion of S. turcica we sequenced 121 isolates from Central Europe, Western Europe and Kenya. Population genetic inference revealed five genetically distinct clusters that differ by their geographic distribution and emergence dates. One genetically diverse cluster is restricted to Kenya, and the four European clusters consist of three distinct clonal lineages with low genetic diversity and one genetically diverse cluster with several clonal sublineages. A comparison of two different coalescent models for genetic diversity in the most frequent and geographically widespread clonal lineage in Europe supported a model of neutral, strongly exponential population growth over models accounting for different types of selection. In contrast to Kenyan isolates, European isolates did not show sexual recombination despite the presence of both mating types MAT1-1 and MAT1-2 in Europe. Within clonal lineages phenotypic variation in virulence to different monogenic resistances likely originated from repeated de novo mutations in virulence genes of S. turcica. k-mer based association mapping between genetic clusters did not identify genomic regions associated with pathogen races but few genomic regions that are significantly differentiated between two clonal lineages and contain putative effector genes. Our results suggest that the rapid colonization of Europe by different clonal lineages of S. turcica was not driven by selection of virulent races but reflects a neutral demographic process of fast pathogen population growth fostered by a rapid expansion of the maize cultivation area in this region.


2021 ◽  
Author(s):  
Alexandra L Singleton ◽  
Samantha Votzke ◽  
Andrea Yammine ◽  
Jean P Gibert

Genetic diversity and temperature increases associated with global climate change, are known to independently influence population growth and extinction risk. Whether increasing temperature may influence the effect of genetic diversity on population growth, however, is not known. We address this issue in the model protist system Tetrahymena thermophila. We test the hypothesis that at temperatures closer to the species thermal optimum (i.e., the temperature at which population growth is maximal), genetic diversity should have a weaker effect on population growth compared to temperatures away from the thermal optimum. To do so, we grew populations of T. thermophila with varying levels of genetic diversity at increasingly warmer temperatures and quantified their intrinsic population growth rate, r. We found that genetic diversity increases population growth at cooler temperatures, but that as temperature increases, this effect almost completely disappears. We also show that a combination of changes in the amount of expressed genetic diversity (G), plastic changes in population growth across temperatures (E), and strong GxE interactions, underlie this temperature effect. Our results uncover important but largely overlooked temperature effects that have implications for the management of small populations with depauperate genetic stocks in an increasingly warming world.


2020 ◽  
Vol 41 ◽  
pp. 245-252
Author(s):  
DE Lee ◽  
E Fienieg ◽  
C Van Oosterhout ◽  
Z Muller ◽  
M Strauss ◽  
...  

Most populations of giraffes have declined in recent decades, leading to the recent IUCN decision to upgrade the species to Vulnerable status, and some subspecies to Endangered. Translocations have been used as a conservation tool to re-introduce giraffes to previously occupied areas or establish new populations, but guidelines for founding populations are lacking. To provide general guidelines for translocation projects regarding feasibility, we simulated various scenarios of translocated giraffe populations to identify viable age and sex distributions of founding populations using population viability analysis (PVA) implemented in Vortex software. We explored the parameter space for demography and the genetic load, examining how variation in founding numbers and sex ratios affected 100 yr probability of population extinction and genetic diversity. We found that even very small numbers of founders (N ≤ 10 females) can appear to be successful in the first decades due to transient positive population growth, but with moderate population growth rate and moderate genetic load, long-term population viability (probability of extinction <0.01) was only achieved with ≥30 females and ≥3 males released. To maintain >95% genetic diversity of the source population in an isolated population, 50 females and 5 males are recommended to compose the founding population. Sensitivity analyses revealed first-year survival and reproductive rate were the simulation parameters with the greatest proportional influence on probability of extinction and genetic diversity. These simulations highlight important considerations for translocation success and data gaps including true genetic load in wild giraffe populations.


2021 ◽  
Author(s):  
◽  
Jennifer Ann Moore

<p>Sexual selection and reproductive strategies affect individual fitness and population genetic diversity. Long-standing paradigms in sexual selection and mating system theory have been overturned with the recent integration of behavioural and genetic techniques. Much of this theory is based on avian systems, where a distinction has now been made between social and genetic partners. Reptiles provide contrast to well-understood avian systems because they are ectothermic, and phylogenetic comparisons are not hindered by complicated patterns of parental care. I investigate the implications of the mating system and reproductive ecology on individual fitness and population genetic diversity of tuatara, the sole extant representative of the archaic reptilian order Sphenodontia. Long-term data on individual size of Stephens Island tuatara revealed a density-dependent decline in body condition driven by an apparently high population growth rate resulting from past habitat modification. Spatial, behavioural, and genetic data from Stephens Island tuatara were analysed to assess territory structure, the mating system, and variation in male fitness. Large male body size was the primary predictor of 1) physical access to females, 2) competitive ability, and 3) mating and paternity success. Seasonal monogamy predominates, with probable long-term polygyny and polyandry. Annually, male reproduction is highly skewed in the wild and in captivity. Over 80% of offspring from a captive population on Little Barrier Island were sired by one male and multiple paternity was found in approximately 18% of these clutches, although it was not detected in any wild clutch. The dominance structure has lead to reduced genetic variation in the recovering Little Barrier Island population. Stephens Island tuatara show fine-scale population genetic structuring that appears to be driven by past habitat modification and a sedentary lifestyle in the absence of sex-biased dispersal or migration. These results will improve conservation management of tuatara by providing guidelines for maximising genetic diversity of small and captive populations and will aid in selecting founders for translocated populations. Because of the archaic phylogenetic position of tuatara, this study provides a baseline for comparisons of mating system evolution in reptiles.</p>


2021 ◽  
Author(s):  
◽  
Jennifer Ann Moore

<p>Sexual selection and reproductive strategies affect individual fitness and population genetic diversity. Long-standing paradigms in sexual selection and mating system theory have been overturned with the recent integration of behavioural and genetic techniques. Much of this theory is based on avian systems, where a distinction has now been made between social and genetic partners. Reptiles provide contrast to well-understood avian systems because they are ectothermic, and phylogenetic comparisons are not hindered by complicated patterns of parental care. I investigate the implications of the mating system and reproductive ecology on individual fitness and population genetic diversity of tuatara, the sole extant representative of the archaic reptilian order Sphenodontia. Long-term data on individual size of Stephens Island tuatara revealed a density-dependent decline in body condition driven by an apparently high population growth rate resulting from past habitat modification. Spatial, behavioural, and genetic data from Stephens Island tuatara were analysed to assess territory structure, the mating system, and variation in male fitness. Large male body size was the primary predictor of 1) physical access to females, 2) competitive ability, and 3) mating and paternity success. Seasonal monogamy predominates, with probable long-term polygyny and polyandry. Annually, male reproduction is highly skewed in the wild and in captivity. Over 80% of offspring from a captive population on Little Barrier Island were sired by one male and multiple paternity was found in approximately 18% of these clutches, although it was not detected in any wild clutch. The dominance structure has lead to reduced genetic variation in the recovering Little Barrier Island population. Stephens Island tuatara show fine-scale population genetic structuring that appears to be driven by past habitat modification and a sedentary lifestyle in the absence of sex-biased dispersal or migration. These results will improve conservation management of tuatara by providing guidelines for maximising genetic diversity of small and captive populations and will aid in selecting founders for translocated populations. Because of the archaic phylogenetic position of tuatara, this study provides a baseline for comparisons of mating system evolution in reptiles.</p>


Sign in / Sign up

Export Citation Format

Share Document