scholarly journals Increasing temperature weakens the positive effect of genetic diversity on population growth

2021 ◽  
Author(s):  
Alexandra L Singleton ◽  
Samantha Votzke ◽  
Andrea Yammine ◽  
Jean P Gibert

Genetic diversity and temperature increases associated with global climate change, are known to independently influence population growth and extinction risk. Whether increasing temperature may influence the effect of genetic diversity on population growth, however, is not known. We address this issue in the model protist system Tetrahymena thermophila. We test the hypothesis that at temperatures closer to the species thermal optimum (i.e., the temperature at which population growth is maximal), genetic diversity should have a weaker effect on population growth compared to temperatures away from the thermal optimum. To do so, we grew populations of T. thermophila with varying levels of genetic diversity at increasingly warmer temperatures and quantified their intrinsic population growth rate, r. We found that genetic diversity increases population growth at cooler temperatures, but that as temperature increases, this effect almost completely disappears. We also show that a combination of changes in the amount of expressed genetic diversity (G), plastic changes in population growth across temperatures (E), and strong GxE interactions, underlie this temperature effect. Our results uncover important but largely overlooked temperature effects that have implications for the management of small populations with depauperate genetic stocks in an increasingly warming world.

2021 ◽  
Author(s):  
Alexandra L. Singleton ◽  
Megan H. Liu ◽  
Samantha Votzke ◽  
Andrea Yammine ◽  
Jean P. Gibert

Author(s):  
Richard Frankham ◽  
Jonathan D. Ballou ◽  
Katherine Ralls ◽  
Mark D. B. Eldridge ◽  
Michele R. Dudash ◽  
...  

Genetic management of fragmented populations is one of the major, largely unaddressed issues in biodiversity conservation. Many species across the planet have fragmented distributions with small isolated populations that are potentially suffering from inbreeding and loss of genetic diversity (genetic erosion), leading to elevated extinction risk. Fortunately, genetic deterioration can usually be remedied by gene flow from another population (crossing between populations within species), yet this is rarely done, in part because of fears that crossing may be harmful (but we can predict when this will occur). We address management of gene flow between previously isolated populations and genetic management under global climate change.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Julián A. Velasco ◽  
Francisco Estrada ◽  
Oscar Calderón-Bustamante ◽  
Didier Swingedouw ◽  
Carolina Ureta ◽  
...  

AbstractImpacts on ecosystems and biodiversity are a prominent area of research in climate change. However, little is known about the effects of abrupt climate change and climate catastrophes on them. The probability of occurrence of such events is largely unknown but the associated risks could be large enough to influence global climate policy. Amphibians are indicators of ecosystems’ health and particularly sensitive to novel climate conditions. Using state-of-the-art climate model simulations, we present a global assessment of the effects of unabated global warming and a collapse of the Atlantic meridional overturning circulation (AMOC) on the distribution of 2509 amphibian species across six biogeographical realms and extinction risk categories. Global warming impacts are severe and strongly enhanced by additional and substantial AMOC weakening, showing tipping point behavior for many amphibian species. Further declines in climatically suitable areas are projected across multiple clades, and biogeographical regions. Species loss in regional assemblages is extensive across regions, with Neotropical, Nearctic and Palearctic regions being most affected. Results underline the need to expand existing knowledge about the consequences of climate catastrophes on human and natural systems to properly assess the risks of unabated warming and the benefits of active mitigation strategies.


2018 ◽  
Author(s):  
Amy Hurford ◽  
Christina A. Cobbold ◽  
Péter K. Molnár

AbstractPopulation growth metrics such asR0are usually asymmetric functions of temperature, with cold-skewed curves arising when the positive effects of a temperature increase outweigh the negative effects, and warm-skewed curves arising in the opposite case. Classically, cold-skewed curves are interpreted as more beneficial to a species under climate warming, because cold-skewness implies increased population growth over a larger proportion of the species’ fundamental thermal niche than warm-skewness. However, inference based on the shape of the fitness curve alone, and without considering the synergistic effects of net reproduction, density, and dispersal may yield an incomplete understanding of climate change impacts. We formulate a moving-habitat integrodifference equation model to evaluate how fitness curve skewness affects species’ range size and abundance during climate warming. In contrast to classic interpretations, we find that climate warming adversely affects populations with cold-skewed fitness curves, positively affects populations with warm-skewed curves and has relatively little or mixed effects on populations with symmetric curves. Our results highlight the synergistic effects of fitness curve skewness, spatially heterogeneous densities, and dispersal in climate change impact analyses, and that the common approach of mapping changes only inR0may be misleading.


Author(s):  
Shugatai Amangul

After Kazakhstan declared its independence, it became a large perform­er in the worldwide international migration process. The attraction of social and economic stability (with an increase in the level of liv­ing standard), stable ethno-demographic and population growth, no nationalist struggles as well as positive geopolitical situations, have lead to a huge flow of immigrants to Kazakhstan in the years since independence. In this study, I have suggested that results of the ethnic immigration policy include strengthening the national identity, creating a positive effect on the ethno-demographic outcomes, and increasing the number of the population size over the last nineteen years. DOI: http://dx.doi.org/10.5564/mjia.v0i17.87 Mongolian Journal of International Affairs, No.17 2012: 109-117


2020 ◽  
Author(s):  
Aaliyah D. Wright ◽  
Nicole L. Garrison ◽  
Ashantye’ S. Williams ◽  
Paul D. Johnson ◽  
Nathan V. Whelan

AbstractMany freshwater gastropod species face extinction, including 79% of species in the family Pleuroceridae. The Oblong Rocksnail, Leptoxis compacta, is a narrow range endemic pleurocerid from the Cahaba River basin in central Alabama that has seen rapid range contraction in the last 100 years. Such a decline is expected to negatively affect genetic diversity in the species. However, precise patterns of genetic variation and gene flow across the restricted range of L. compacta are unknown. This lack of information limits our understanding of human impacts on the Cahaba River system and Pleuroceridae. Here, we show that L. compacta has likely seen a species-wide decline in genetic diversity, but remaining populations have relatively high genetic diversity. We also report a contemporary range extension compared to the last published survey. Leptoxis compacta does not display an isolation by distance pattern, contrasting patterns seen in many riverine taxa. Our findings also indicate that historical range contraction has resulted in the absence of common genetic patterns seen in many riverine taxa like isolation by distance as the small distribution of L. compacta allows for relatively unrestricted gene flow across its remaining range despite limited dispersal abilities. Two collection sites had higher genetic diversity than others, and broodstock sites for future captive propagation and reintroduction efforts should utilize sites identified here as having the highest genetic diversity. Broadly, our results support the hypothesis that range contraction will result in the reduction of species-wide genetic diversity, and common riverscape genetic patterns cannot be assumed to be present in species facing extinction risk.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9789
Author(s):  
Aaliyah D. Wright ◽  
Nicole L. Garrison ◽  
Ashantye’ S. Williams ◽  
Paul D. Johnson ◽  
Nathan V. Whelan

Many freshwater gastropod species face extinction, including 79% of species in the family Pleuroceridae. The Oblong Rocksnail, Leptoxis compacta, is a narrow range endemic pleurocerid from the Cahaba River basin in central Alabama that has seen rapid range contraction in the last 100 years. Such a decline is expected to negatively affect genetic diversity in the species. However, precise patterns of genetic variation and gene flow across the restricted range of L. compacta are unknown. This lack of information limits our understanding of human impacts on the Cahaba River system and Pleuroceridae. Here, we show that L. compacta has likely seen a species-wide decline in genetic diversity, but remaining populations have relatively high genetic diversity. We also report a contemporary range extension compared to the last published survey. Our findings indicate that historical range contraction has resulted in the absence of common genetic patterns seen in many riverine taxa like isolation by distance as the small distribution of L. compacta allows for relatively unrestricted gene flow across its remaining range despite limited dispersal abilities. Two collection sites had higher genetic diversity than others, and broodstock sites for future captive propagation and reintroduction efforts should utilize sites identified here as having the highest genetic diversity. Broadly, our results support the hypothesis that range contraction will result in the reduction of species-wide genetic diversity, and common riverscape genetic patterns cannot be assumed to be present in species facing extinction risk.


2021 ◽  
Author(s):  
William M. Hammond ◽  
A. Park Williams ◽  
John T. Abatzoglou ◽  
Henry D. Adams ◽  
Tamir Klein ◽  
...  

<p>Earth’s forests face grave challenges in the Anthropocene, including hotter droughts increasingly associated with widespread forest die-off. But despite the vital importance of forests—especially historical forests—to global ecosystem services, their fates in a warming world remain highly uncertain. Critically missing is quantitative determination of hotter-drought climatic drivers at globally-distributed, ground-based, tree-mortality sites. We established a precisely geo-referenced global database documenting climate-induced mortality events spanning all tree-supporting biomes from 154 studies since 1970. Here we quantify a lethal global hotter-drought fingerprint from these tree-mortality sites across 675 locations encompassing 1,303 database plots. Frequency of these lethal climate conditions accelerates under projected warming, up 140% by +4℃. Our database, soon available at tree-mortality.net, provides initial footing for further community development of quantitative, ground-based monitoring of global tree mortality (e.g., still including peer-reviewed observations, but importantly also those from forestry professionals, land managers, and citizen scientists). Furthermore, our database immediately enables critical predictive model validation and improved remote sensing of mortality. While our initial database enabled empirical quantification of a global climate signal for hotter-drought triggered tree mortality, ongoing and online contributions to the database (with efforts to be more spatially representative) will enable myriad future analyses and progress toward understanding the role of hotter-drought in the mechanistically complex process of tree mortality. Our global fingerprint of lethal hotter-drought confirms many of Earth’s forests are increasingly imperiled by further warming.</p>


2021 ◽  
Vol 15 (3) ◽  
pp. 287-295
Author(s):  
Liucheng Wang ◽  
Huanhuan Zhao ◽  
Xianglin Song ◽  
Yake Li ◽  
Dong Li

Heavy metal pollution has adversely affected the ecological environment. As an eco-friendly and renewable material, biochar has a positive effect on environmental restoration. For study the feasibility of removing lead using corn straw biochar, the adsorption characteristics and mechanism were studied. This work prepared corn straw biochar at 300 °C, and its surface properties were characterized. The adsorption kinetics, isotherm, thermodynamics were determined. The result indicated the mechanism belonged ion exchange and complexation, and the experiment were controlled by comprehensive process, which included reaction rate and diffusion. The Langmuir model had better fitting results for the adsorption data, which indicated that adsorption was chemical adsorption and single molecular layer adsorption, and the maximum adsorption amount of corn straw biochar at 25 °C, 35 °C and 45 °C were 81.63 mg/g, 83.89 mg/g and 89.21 mg/g respectively. The thermodynamic analysis showed that increasing temperature was helpful to adsorption, and the adsorption was spontaneous. The results can be used for comprehensive utilization of straw and treatment of lead pollution.


Author(s):  
Richard Frankham ◽  
Jonathan D. Ballou ◽  
Katherine Ralls ◽  
Mark D. B. Eldridge ◽  
Michele R. Dudash ◽  
...  

Inbreeding reduces survival and reproduction (i.e. it causes inbreeding depression), and thereby increases extinction risk. Inbreeding depression is due to increased homozygosity for harmful alleles and at loci exhibiting heterozygote advantage. Inbreeding depression is nearly universal in sexually reproducing organisms that are diploid or have higher ploidies. Impacts of inbreeding are generally greater in species that naturally outbreed than those that inbreed, in stressful than benign environments, and for fitness than peripheral traits. Harmful effects accumulate across the life cycle, resulting in devastating effects on total fitness in outbreeding species.Species face ubiquitous environmental change and must adapt or they will go extinct. Genetic diversity is the raw material required for evolutionary adaptation. However, loss of genetic diversity is unavoidable in small isolated populations, diminishing their capacity to evolve in response to environmental changes, and thereby increasing extinction risk.


Sign in / Sign up

Export Citation Format

Share Document