Influence of 226 Ra on Bone Marrow Stem Cells in Mice: Effect of Radium Decorporation by a Long-Term Treatment with Na-Alginate on Stem-Cell Damage

1980 ◽  
Vol 82 (1) ◽  
pp. 74 ◽  
Author(s):  
G. Schoeters ◽  
S. Van Puymbroeck ◽  
O. Vanderborght
Blood ◽  
2002 ◽  
Vol 100 (1) ◽  
pp. 312-317 ◽  
Author(s):  
Estelle J. K. Noach ◽  
Albertina Ausema ◽  
Jan H. Dillingh ◽  
Bert Dontje ◽  
Ellen Weersing ◽  
...  

Abstract Low-toxicity conditioning regimens prior to bone marrow transplantation (BMT) are widely explored. We developed a new protocol using hematopoietic growth factors prior to low-dose total body irradiation (TBI) in recipients of autologous transplants to establish high levels of long-term donor cell engraftment. We hypothesized that treatment of recipient mice with growth factors would selectively deplete stem cells, resulting in successful long-term donor cell engraftment after transplantation. Recipient mice were treated for 1 or 7 days with growth factors (stem cell factor [SCF] plus interleukin 11 [IL-11], SCF plus Flt-3 ligand [FL], or granulocyte colony-stimulating factor [G-CSF]) prior to low-dose TBI (4 Gy). Donor cell chimerism was measured after transplantation of congenic bone marrow cells. High levels of donor cell engraftment were observed in recipients pretreated for 7 days with SCF plus IL-11 or SCF plus FL. Although 1-day pretreatments with these cytokines initially resulted in reduced donor cell engraftment, a continuous increase in time was observed, finally resulting in highly significantly increased levels of donor cell contribution. In contrast, G-CSF treatment showed no beneficial effects on long-term engraftment. In vitro stem cell assays demonstrated the effect of cytokine treatment on stem cell numbers. Donor cell engraftment and number of remaining recipient stem cells after TBI were strongly inversely correlated, except for groups treated for 1 day with SCF plus IL-11 or SCF plus FL. We conclude that long-term donor cell engraftment can be strongly augmented by treatment of recipient mice prior to low-dose TBI with hematopoietic growth factors that act on primitive cells.


2011 ◽  
Vol 32 (4) ◽  
pp. 453-471 ◽  
Author(s):  
Frederic Castinetti ◽  
Shannon W. Davis ◽  
Thierry Brue ◽  
Sally A. Camper

Stem cells have been identified in organs with both low and high cell turnover rates. They are characterized by the expression of key marker genes for undifferentiated cells, the ability to self-renew, and the ability to regenerate tissue after cell loss. Several recent reports present evidence for the presence of pituitary stem cells. Here we offer a critical review of the field and suggest additional studies that could resolve points of debate. Recent reports have relied on different markers, including SOX2, nestin, GFRa2, and SCA1, to identify pituitary stem cells and progenitors. Future studies will be needed to resolve the relationships between cells expressing these markers. Members of the Sox family of transcription factors are likely involved in the earliest steps of pituitary stem cell proliferation and the earliest transitions to differentiation. The transcription factor PROP1 and the NOTCH signaling pathway may regulate the transition to differentiation. Identification of the stem cell niche is an important step in understanding organ development. The niche may be the marginal zone around the lumen of Rathke's pouch, between the anterior and intermediate lobes of mouse pituitary, because cells in this region apparently give birth to all six pituitary hormone cell lineages. Stem cells have been shown to play a role in recurrent malignancies in some tissues, and their role in pituitary hyperplasia, pituitary adenomas, and tumors is an important area for future investigation. From a therapeutic viewpoint, the ability to cultivate and grow stem cells in a pituitary predifferentiation state might also be helpful for the long-term treatment of pituitary deficiencies.


Blood ◽  
2018 ◽  
Vol 132 (7) ◽  
pp. 735-749 ◽  
Author(s):  
Simranpreet Kaur ◽  
Liza J. Raggatt ◽  
Susan M. Millard ◽  
Andy C. Wu ◽  
Lena Batoon ◽  
...  

Key Points Recipient macrophages persist in hematopoietic tissues and self-repopulate via in situ proliferation after syngeneic transplantation. Targeted depletion of recipient CD169+ macrophages after transplant impaired long-term bone marrow engraftment of hematopoietic stem cells.


2019 ◽  
Vol 13 (5) ◽  
pp. 1311-1331 ◽  
Author(s):  
Alicia Bort ◽  
Belén G. Sánchez ◽  
Pedro A. Mateos‐Gómez ◽  
Diana Vara‐Ciruelos ◽  
Nieves Rodríguez‐Henche ◽  
...  

Blood ◽  
2015 ◽  
Vol 125 (17) ◽  
pp. 2678-2688 ◽  
Author(s):  
Marisa Bowers ◽  
Bin Zhang ◽  
Yinwei Ho ◽  
Puneet Agarwal ◽  
Ching-Cheng Chen ◽  
...  

Key Points Bone marrow OB ablation leads to reduced quiescence, long-term engraftment, and self-renewal capacity of hematopoietic stem cells. Significantly accelerated leukemia development and reduced survival are seen in transgenic BCR-ABL mice following OB ablation.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2083-2083
Author(s):  
Brian Bolwell ◽  
Brad Pohlman ◽  
Matt Kalaycio ◽  
Steve Andresen ◽  
Elizabeth Kuczkowski ◽  
...  

Abstract Long-term results of conventional therapy of Hodgkin’s disease (HD) has demonstrated the importance of long-term and ongoing follow-up given the potential for later complications after curative therapy. While many transplant series report follow-up of several years after ABMT, few report a 15-year experience from a single institution. This report examines the outcomes of 220 patients receiving high-dose chemotherapy and autologous stem cell transplant (ABMT) at The Cleveland Clinic Foundation from January 1990 through June 2005. Median age was 33 years (range, 14–70 years); median time from diagnosis to transplant was 19 months; 47% received prior radiation therapy; 82% had nodular sclerosis histologic subtype; number of courses of prior chemotherapy were: 1 (16%), 2 (66%), 3 (14%), 4 or more (4%). All patients received salvage therapy prior to transplant: 29% were in a complete remission (CR), 55% in a partial remission (PR), and 16% refractory. All patients received a chemotherapy-only preparative regimen, most commonly Bu/Cy/VP (73%), followed by CBV (17%). 78% received peripheral stem cells alone; 22% received either autologous bone marrow or a combination of bone marrow plus peripheral stem cells. At the present time 60% of patients are alive. Of the 88 patients who died, the most common cause of death is relapse (69% of deaths). Secondary malignancy occurred in 11 patients (5%); 9 of these cases were secondary AML/MDS and 5 of these patients with secondary malignancies have died. 44% of the entire cohort has relapsed, at a median of 9 months post-transplant (range, 1.4–76 months). 10-year overall survival is 47%. A multivariable analysis showed that the two significant variables that correlated with post-BMT relapse were the number of prior chemotherapies (p = 0.011), and patients treated in remission vs. those not in remission (p = 0.002). Of patients receiving 2 or more prior courses of chemotherapy, 60% have relapsed 8 years post-transplant, compared to 40% of those receiving one course of prior chemotherapy. The risk of relapse by the number of prior chemotherapy courses is shown graphically below: Figure Figure In conclusion, this very large series of ABMT for recurrent HD with long-term follow-up demonstrates the importance of timely autografting in relapsed HD patients. The optimal time to proceed with ABMT is after failing one, and only one, course of chemotherapy. Delaying transplant for unrealistic long-term salvage with other courses of traditional chemotherapy will negatively affect the outcome of subsequent ABMT.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1345-1345
Author(s):  
Dan Ran ◽  
Mario Schubert ◽  
Larissa Pietsch ◽  
Isabel Taubert ◽  
Christian Wallenwein ◽  
...  

Abstract INTRODUCTION: Normal hematopoietic stem cells (HSC) are characterized by their ability to self-renew, to generate multiple cell-lineages, and show slow divisional kinetics. Leukemic stem cells (LSC) have been reported to show similar characteristics but their identification has been elusive. We have studied various methods and have identified aldehyde dehydrogenase (ALDH) staining as an optimal method for the enrichment of primary human LSC. MATERIAL&METHODS: Bone marrow samples were obtained from patients with newly diagnosed AML after informed consent. Mononuclear cells were stained with Aldefluor and sorted by flow cytometry according to their forward/side scatter characteristics and ALDH activity (ALDH+/ALDH−). Alternatively, primary AML samples were being enriched for CD34+ cells by magnetic column, then double-stained with CD34-antibodies and Aldefluor and sorted for the co-expression of CD34+ and ALDH+, respectively for CD34+ alone. Human Mesenchymal Stromal Cells (MSC), isolated from human bone marrow, were used as a surrogate model for the cellular microenvironment of the hematopoietic niche. Adhesion of various AML cell lines and subpopulations of primary leukemic cells (ALDH+, ALDH−, CD34+, CD34+/ALDH+, all blasts) to MSC was tested in the adhesion chamber assay. Semi-quantitative RT-PCR was used to analyze the gene expression of various adhesion molecules and Western- Blot analysis was performed to validate the PCR-results on protein level. The generation of secondary leukemic colonies was evaluated in a semi-solid methylcellulose medium, as well as in a long term co-culture system (LSC-IC assay; in analogy to the LTC-IC assay). RESULTS: The percentage of ALDH+ cells ranged from 0.01% to 13.2% with a median of 1.47% (n=55). Adhesion significantly differed in the ALDH+ and ALDH− subpopulations: 85±4% of ALDH+ cells but only 61±8% of ALDH− cells were adherent (n=11, p<0.001). Adhesion molecules, such as CXCR4 and CD44, were highly expressed on the ALDH+ subpopulation both on mRNA level and protein level, in contrast to the ALDH− subpopulation. Analysis of the initial divisional kinetics on single cell base showed that the ALDH+ subpopulation contained more slow dividing cells whereas the majority of the ALDH− subpopulation consisted of fast-dividing cells (n=3; p<0.01). The frequency of long term leukemic colony initiating cells (LSC-IC) was 3.82% in the ALDH+ but only 0.01% in the ALDH− (n=21; p<0.01). In the CD34+ the LSC-IC frequency was 1.96% versus 0.01% in the CD34− (n=5, p<0.01). The highest LSC-IC frequency could be monitored in ALDH+/CD34+ cells: 6.1% generated secondary leukemic colonies (n=5). These colonies, harvested after 7 weeks of cultivation, were examined for their immune phenotype and screened for cytogenetic aberrations by fluorescent in situ hybridization (FISH) and the chromosomal aberrations were consistent with the AML samples taken at diagnosis. Furthermore, the frequency of ALDH+ cells correlated significantly with adverse prognostic factors: patients with a high-risk karyotype had a mean of 2.9% ALDH+ cells (n=21); in contrast, patients with a normal karyotype had a mean of 0.4% ALDH+ cells in their bone marrow (n=34; p<0.001). The ability of ALDH+ versus ALDH− subsets to generate secondary leukemia in the animal model is concurrently examined. DISCUSSION: In summary, measurement of the ALDH activity provides a useful tool for the isolation of a distinct AML-blast subpopulation with stem-cell like features (LSC). The ALDH+ subsets showed higher affinity to the surrogate niche (MSC), elevated expression of CD44, Cadherin-2, and CXCR4 and were associated with an increased frequency of secondary leukemic colonies in vitro (LSC-IC). Above all, the frequency of ALDH+ blasts correlated with clinical prognostic factors, which substanciates LSC as a relevant therapeutic target.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1577-1577
Author(s):  
Yaoyu Chen ◽  
Sullivan Con ◽  
Yiguo Hu ◽  
Linghong Kong ◽  
Cong Peng ◽  
...  

Abstract Abstract 1577 Hematopoiesis is a tightly regulated biological process that relies upon complicated interactions between the blood cells and their microenvironment. Adhesion molecules like P-selectin are essential to hematopoiesis, and their dysregulation has been implicated in leukemogenesis. We have previously shown a role for P-selectin in chronic myeloid leukemia and demonstrated that in its absence the disease process accelerates. Recently, there has also been speculation that P-selectin may play a role in the aging hematopoietic stem cells (HSCs), as its expression in upregulated as a mouse ages. In this study, we show that the loss of P-selectin function dysregulates the balance of stem cells and progenitors and that these differences become more pronounced with age. We compared the percentages of HSCs, long-term (LT)-HSCs, short-term (ST)-HSCs, multipotent progenitors (MPPs), CMPs, GMPs and MEPs in bone marrow by flow cytometry between wild type (WT) and Selp-/- mice. An age-dependent LT-HSC expansion was observed in WT mice. However, this expansion was prevented by the loss of Selp as observed in Selp-/-mice. Further, we demonstrate that with age LT-HSCs in particular express more elevated levels of P-selectin. LT-HSCs and ST-HSC/MPPs were isolated from the bone marrow of young (2 months old) and old (15 months old) WT mice and examined P-selectin expression by FACS. A significant increase in P-selectin expression was observed in LT-HSCs of old mice, and this increase was not observed in the ST-HSC+MPP subpopulations. We also show that the loss of P-selectin gene has profound effects of stem cell function, altering the capacity of these cells to home. Despite impaired homing capacity, stem cells lacking P-selectin possess a competitive advantage over their wild type counterparts. Using a stem cell competition assay, HSCs derived from Selp-/- mice (CD45.2+) and WT control mice (CD45.2+GFP+) were mixed in 1:1 ratio and transplanted into irradiated WT recipients (CD45.1). The initial findings were potentially indicative of the ability of cells derived from GFP mice to more efficiently home and engraft. Despite this initial advantage, cells derived from Selp-/- eventually exhibited a competitive and statistically significant advantage over the cells derived from GFP mice. At 30 days post-transplant, 49.9±1.4% of the CD45.2 subpopulation was GFP+. At 86 days post-transplant, 25.7±3.3 % of the CD45.2 cells derived from the peripheral blood were GFP+. Similarly, 23.0±3.7% of the CD45.2 cells derived from the bone marrow of these mice were GFP+. Indeed, we demonstrate that recipients of P-selectin deficient bone marrow cells more efficiently repopulate the bone marrow than controls and that this advantage extends and expands in the long-term. Finally, we demonstrate that recipients of leukemic cells lacking P-selectin develop a more accelerated form of leukemia accompanied by significant increases in stem and progenitor cells. Bone marrow cells from donor WT and Selp-/- mice were infected with retrovirus expressing BCR-ABL-GFP, and irradiated WT recipients were transplanted with 2×105 of these transduced donor cells. At 14 days post-transplant, recipient mice from each of the groups were sacrificed, and bone marrow cells were harvested and analyzed by flow cytometry. Recipients of leukemic Selp-/- cells possessed 3.5-fold more LSCs than recipients of wild-type cells. There were 3.1-fold more LT-LSCs and 3.8-fold more ST-LSCs and MPPs in recipients of Selp-/- cells than WT cells. In addition, recipients of leukemic Selp-/- cells possessed significantly more CMP (16.9-fold) and MEP (4.5-fold) cells. Because P-selectin expression increases with age on LT-HSCs, we sought to determine the role that age plays in CML development and progression. Bone marrow cells derived from 15-month-old donor Selp-/- and WT mice were transduced with BCR-ABL, respectively, followed by transplantation of the transduced cells into recipient mice. All recipients of BCR-ABL transduced Selp-/- cells died by 23 days after induction of CML and had a median survival of 19 days, whereas recipients of the transduced WT cells survived significantly longer. This pro-leukemic role for cells lacking P-selectin expression is leukemic stem cell-specific rather than stromal cell-specific and supports an essential role for P-selectin on leukemic stem cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3860-3860
Author(s):  
Ioanna N Trivai ◽  
Thomas Stuebig ◽  
Anita Badbaran ◽  
Ursula Gehling ◽  
Asterios Tsiftsoglou ◽  
...  

Abstract Abstract 3860 Primary myelofibrosis (PMF) comprises a myeloproliferative neoplasia accompanied by imbalance of various tissues of the mesoderm, let alone the hematopoietic tissue. Involvement of multiple hematopoietic lineages during disease progression suggests the clonality of myelofibrosis that can be attributed to an initial stem cell defect at the very early stage of the stem cell hierarchy. Hematopoietic and endothelial phenotypes of circulating multipotent stem cells in patient peripheral blood, along with the increased microvascular density in the bone marrow, leads to the hypothesis that the critical event in PMF involves malignant transformation of a stem cell with hemangioblastic potential. Former studies have provided functional evidence that activated JAK2 signalling in primitive human hematopoietic cells is sufficient to drive key processes involved in the pathogenesis of the disease. In this study, the functionality and differentiation potential of circulating primitive JAK2V617F+ stem cells from primary myelofibrosis patients is assessed. Primitive stem cells were isolated from peripheral blood of 25 patients. All patients participating in the study were diagnosed with primary myelofibrosis, have been untreated, and were found positive for JAK2V617F mutation. Isolated stem cells were analysed for purity and assessed for the expression of markers characteristic for the hemangioblast phenotype (CD34, CD133, CD45, VEGFR2, VE-Cadherin, E-Cadherin, CD31) with flow cytometry. Genomic DNA was isolated from various stem cell populations to determine the mutational status by PCR. Our results indicate that long term repopulating stem cells circulating in peripheral blood bear the JAK2V617F mutation. Hemangioblast resembling populations within the isolated prime stem cells were also found positive for the mutation. Long term repopulating stem cells bearing different allele burden for JAK2V617F mutation from PMF patient peripheral blood were expanded for up to 4 months. Various colonies formed after seeding in semisolid media were characterised by morphological features (CFU-GEMM, CFU-GM, CFU-E, CFU-M, CFU-Endo) and expressing genes by quantitative PCR. Moreover, allele burden determination for various progenitors of both hematopoietic and endothelial lineages was performed. JAK2V617F allele burden varied within individual progeny phenotypes, indicating the acquisition of the mutation that boosts the outgrowth of the malignant clone within the hemangioblast compartment of the bone marrow. Endothelial and macrophage progenitors appear heterozygotic while all rest progenitors of various hematopoietic lineages can be either heterozygotic or homozygotic. This indicates high genomic instability of the JAK2V617F+ malignant clone as it is driven into hematopoietic differentiation. Our results indicate the existence of a malignant clone with hemangioblast phenotype in PMF which can differentiate into hematopoietic and/or endothelial progenitors in vitro. Our experiments shed light to the pathogenesis of PMF by characterising the potential of the defective stem cell subpopulation responsible for the disease. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2308-2308
Author(s):  
Laura R Goldberg ◽  
Mark S Dooner ◽  
Mandy Pereira ◽  
Michael DelTatto ◽  
Elaine Papa ◽  
...  

Abstract Abstract 2308 Hematopoietic stem cell biologists have amassed a tremendous depth of knowledge about the biology of the marrow stem cell over the past few decades, facilitating invaluable basic scientific and translational advances in the field. Most of the studies to date have focused on highly purified populations of marrow cells, with emphasis placed on the need to isolate increasingly restricted subsets of marrow cells within the larger population of resident bone marrow cells in order to get an accurate picture of the true stem cell phenotype. Such studies have led to the dogma that marrow stem cells are quiescent with a stable phenotype and therefore can be purified to homogeneity. However, work from our laboratory, focusing on the stem cell potential in un-separated whole bone marrow (WBM), supports an alternate view of marrow stem cell biology in which a large population of marrow stem cells are actively cycling, continually changing phenotype with cell cycle transit, and therefore, cannot be purified to homogeneity. Our studies separating WBM into cell cycle-specific fractions using Hoechst 33342/Pyronin Y or exposing WBM to tritiated thymidine suicide followed by competitive engraftment into lethally irradiated mice revealed that over 50% of the long-term multi-lineage engraftment potential in un-separated marrow was due to cells in S/G2/M. This is in stark contrast to studies showing that highly purified stem cell populations such as LT-HSC (Lineage–c-kit+sca-1+flk2−) engraft predominantly when in G0. Additionally, by performing standard isolation of a highly purified population of stem cells, SLAM cells (Lineage–c-kit+sca-1+flk2−CD150+CD41−CD48−), and testing the engraftment potential of different cellular fractions created and routinely discarded during this purification process, we found that 90% of the potential engraftment capacity in WBM was lost during conventional SLAM cell purification. Incubation of the Lineage-positive and Lineage-negative fractions with tritiated thymidine, a DNA analogue which selectively kills cells traversing S-phase, led to dramatic reductions in long-term multi-lineage engraftment potential found within both cellular fractions (over 95% and 85% reduction, respectively). This indicates that the discarded population of stem cells during antibody-based stem cell purification is composed largely of cycling cells. In sum, these data strongly support that 1) whole bone marrow contains actively cycling stem cells capable of long-term multi-lineage engraftment, 2) these actively cycling marrow stem cells are lost during the standard stem cell purification strategies, and 3) the protean phenotype of actively cycling cells as they transit through cell cycle will render cycling marrow stem cells difficult to purify to homogeneity. Given the loss of a large pool of actively cycling HSC during standard stem cell isolation techniques, these data underscore the need to re-evaluate the total hematopoietic stem cell pool on a population level in addition to a clonal level in order to provide a more comprehensive study of HSC biology. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document